Joined Type Length Encoding for Nested Named Entity Recognition

Author(s):  
Mohammad Sadegh Sheikhaei ◽  
Hasan Zafari ◽  
Yuan Tian

In this article, we propose a new encoding scheme for named entity recognition (NER) called Joined Type-Length encoding (JoinedTL). Unlike most existing named entity encoding schemes, which focus on flat entities, JoinedTL can label nested named entities in a single sequence. JoinedTL uses a packed encoding to represent both type and span of a named entity, which not only results in less tagged tokens compared to existing encoding schemes, but also enables it to support nested NER. We evaluate the effectiveness of JoinedTL for nested NER on three nested NER datasets: GENIA in English, GermEval in German, and PerNest, our newly created nested NER dataset in Persian. We apply CharLSTM+WordLSTM+CRF, a three-layer sequence tagging model on three datasets encoded using JoinedTL and two existing nested NE encoding schemes, i.e., JoinedBIO and JoinedBILOU. Our experiment results show that CharLSTM+WordLSTM+CRF trained with JoinedTL encoded datasets can achieve competitive F1 scores as the ones trained with datasets encoded by two other encodings, but with 27%–48% less tagged tokens. To leverage the power of three different encodings, i.e., JoinedTL, JoinedBIO, and JoinedBILOU, we propose an encoding-based ensemble method for nested NER. Evaluation results show that the ensemble method achieves higher F1 scores on all datasets than the three models each trained using one of the three encodings. By using nested NE encodings including JoinedTL with CharLSTM+WordLSTM+CRF, we establish new state-of-the-art performance with an F1 score of 83.7 on PerNest, 74.9 on GENIA, and 70.5 on GermEval, surpassing two recent neural models specially designed for nested NER.

2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


2020 ◽  
Vol 34 (05) ◽  
pp. 8164-8171
Author(s):  
Bing Li ◽  
Shifeng Liu ◽  
Yifang Sun ◽  
Wei Wang ◽  
Xiang Zhao

Recently, there has been an increasing interest in identifying named entities with nested structures. Existing models only make independent typing decisions on the entire entity span while ignoring strong modification relations between sub-entity types. In this paper, we present a novel Recursively Binary Modification model for nested named entity recognition. Our model utilizes the modification relations among sub-entities types to infer the head component on top of a Bayesian framework and uses entity head as a strong evidence to determine the type of the entity span. The process is recursive, allowing lower-level entities to help better model those on the outer-level. To the best of our knowledge, our work is the first effort that uses modification relation in nested NER task. Extensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art models in nested NER tasks, and delivers competitive results with state-of-the-art models in flat NER task, without relying on any extra annotations or NLP tools.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-24
Author(s):  
Pratyay Banerjee ◽  
Kuntal Kumar Pal ◽  
Murthy Devarakonda ◽  
Chitta Baral

In this work, we formulated the named entity recognition (NER) task as a multi-answer knowledge guided question-answer task (KGQA) and showed that the knowledge guidance helps to achieve state-of-the-art results for 11 of 18 biomedical NER datasets. We prepended five different knowledge contexts—entity types, questions, definitions, and examples—to the input text and trained and tested BERT-based neural models on such input sequences from a combined dataset of the 18 different datasets. This novel formulation of the task (a) improved named entity recognition and illustrated the impact of different knowledge contexts, (b) reduced system confusion by limiting prediction to a single entity-class for each input token (i.e., B , I , O only) compared to multiple entity-classes in traditional NER (i.e., B entity 1, B entity 2, I entity 1, I , O ), (c) made detection of nested entities easier, and (d) enabled the models to jointly learn NER-specific features from a large number of datasets. We performed extensive experiments of this KGQA formulation on the biomedical datasets, and through the experiments, we showed when knowledge improved named entity recognition. We analyzed the effect of the task formulation, the impact of the different knowledge contexts, the multi-task aspect of the generic format, and the generalization ability of KGQA. We also probed the model to better understand the key contributors for these improvements.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christian Nawroth ◽  
Felix Engel ◽  
Matthias Hemmje

Abstract This article summarizes selected aspects of a dissertation project and prior publications related to the DFG-funded RecomRatio research project. As such, it provides an end-to-end overview of a research project that aims at extracting and utilizing Emerging Knowledge represented by two concepts that we define as Emerging Named Entities and Emerging Argument Entities to support medical argumentation retrieval. We use these two concepts to model novelty in general scientific literature and, in particular, in medical argumentation. Therefore, this paper will provide an overview of Emerging Knowledge and definitions of Emerging Named Entities and Emerging Argument Entities. It includes a review of state-of-the-art and related work. A preparatory study shows that Emerging Argument Entities are in use in the medical literature. Based on the state of the art review and the preparatory study, a conceptual system design based on Emerging Named Entity Recognition and a state-of-the-art Argumentation Mining framework (ArgumenText) is introduced to extract Emerging Argument Entities from medical literature and make them available for Argument Retrieval. The conceptual system design supports two Argument Retrieval use cases: 1.) Ranking of result sets based on Emerging Argument Entities, and 2.) Highlighting Emerging Argument Entities within result sets. A case study for the extraction and visualization of Emerging Named Entities and Emerging Argument Entities is implemented based on the conceptual design. This proof-of-concept system is used to conduct technical evaluations regarding the Emerging Named Entity Recognition. Furthermore, prior results of an expert-based evaluation are presented. The article finishes with a conclusion and brief outlook of future work, e. g., supporting the Argument Interchange Format.


2020 ◽  
Author(s):  
Vladislav Mikhailov ◽  
Tatiana Shavrina

Named Entity Recognition (NER) is a fundamental task in the fields of natural language processing and information extraction. NER has been widely used as a standalone tool or an essential component in a variety of applications such as question answering, dialogue assistants and knowledge graphs development. However, training reliable NER models requires a large amount of labelled data which is expensive to obtain, particularly in specialized domains. This paper describes a method to learn a domain-specific NER model for an arbitrary set of named entities when domain-specific supervision is not available. We assume that the supervision can be obtained with no human effort, and neural models can learn from each other. The code, data and models are publicly available.


Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 71
Author(s):  
Gonçalo Carnaz ◽  
Mário Antunes ◽  
Vitor Beires Nogueira

Criminal investigations collect and analyze the facts related to a crime, from which the investigators can deduce evidence to be used in court. It is a multidisciplinary and applied science, which includes interviews, interrogations, evidence collection, preservation of the chain of custody, and other methods and techniques of investigation. These techniques produce both digital and paper documents that have to be carefully analyzed to identify correlations and interactions among suspects, places, license plates, and other entities that are mentioned in the investigation. The computerized processing of these documents is a helping hand to the criminal investigation, as it allows the automatic identification of entities and their relations, being some of which difficult to identify manually. There exists a wide set of dedicated tools, but they have a major limitation: they are unable to process criminal reports in the Portuguese language, as an annotated corpus for that purpose does not exist. This paper presents an annotated corpus, composed of a collection of anonymized crime-related documents, which were extracted from official and open sources. The dataset was produced as the result of an exploratory initiative to collect crime-related data from websites and conditioned-access police reports. The dataset was evaluated and a mean precision of 0.808, recall of 0.722, and F1-score of 0.733 were obtained with the classification of the annotated named-entities present in the crime-related documents. This corpus can be employed to benchmark Machine Learning (ML) and Natural Language Processing (NLP) methods and tools to detect and correlate entities in the documents. Some examples are sentence detection, named-entity recognition, and identification of terms related to the criminal domain.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


Author(s):  
Elena Álvarez-Mellado ◽  
María Luisa Díez-Platas ◽  
Pablo Ruiz-Fabo ◽  
Helena Bermúdez ◽  
Salvador Ros ◽  
...  

AbstractMedieval documents are a rich source of historical data. Performing named-entity recognition (NER) on this genre of texts can provide us with valuable historical evidence. However, traditional NER categories and schemes are usually designed with modern documents in mind (i.e. journalistic text) and the general-domain NER annotation schemes fail to capture the nature of medieval entities. In this paper we explore the challenges of performing named-entity annotation on a corpus of Spanish medieval documents: we discuss the mismatches that arise when applying traditional NER categories to a corpus of Spanish medieval documents and we propose a novel humanist-friendly TEI-compliant annotation scheme and guidelines intended to capture the particular nature of medieval entities.


2014 ◽  
Vol 40 (2) ◽  
pp. 469-510 ◽  
Author(s):  
Khaled Shaalan

As more and more Arabic textual information becomes available through the Web in homes and businesses, via Internet and Intranet services, there is an urgent need for technologies and tools to process the relevant information. Named Entity Recognition (NER) is an Information Extraction task that has become an integral part of many other Natural Language Processing (NLP) tasks, such as Machine Translation and Information Retrieval. Arabic NER has begun to receive attention in recent years. The characteristics and peculiarities of Arabic, a member of the Semitic languages family, make dealing with NER a challenge. The performance of an Arabic NER component affects the overall performance of the NLP system in a positive manner. This article attempts to describe and detail the recent increase in interest and progress made in Arabic NER research. The importance of the NER task is demonstrated, the main characteristics of the Arabic language are highlighted, and the aspects of standardization in annotating named entities are illustrated. Moreover, the different Arabic linguistic resources are presented and the approaches used in Arabic NER field are explained. The features of common tools used in Arabic NER are described, and standard evaluation metrics are illustrated. In addition, a review of the state of the art of Arabic NER research is discussed. Finally, we present our conclusions. Throughout the presentation, illustrative examples are used for clarification.


Sign in / Sign up

Export Citation Format

Share Document