Enabling Cross-technology Communication from LoRa to ZigBee in the 2.4 GHz Band

2022 ◽  
Vol 18 (2) ◽  
pp. 1-23
Author(s):  
Junyang Shi ◽  
Xingjian Chen ◽  
Mo Sha

IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.

2013 ◽  
Vol 278-280 ◽  
pp. 689-692 ◽  
Author(s):  
Jin Jin Xu ◽  
Sheng Jun Su ◽  
Ming Hui Yuan

A SSNS (simple sensor network sniffer) is used to analyze and evaluate the Wireless Sensor Networks (WSN) effectively. SSNS is designed to monitor IEEE 802.15.4 protocol frame, which based on the Ethernet. Unlike the existed monitoring system, our design is much simpler and needs less resource. It is analyzed in this paper that the monitor network framework, time synchronization, and analysis program design. The results show that SSNS works stably, and can real-time display the frame monitored and reflect the dynamic change of WSN.


2012 ◽  
Vol 241-244 ◽  
pp. 908-911
Author(s):  
Ming Hui Yuan ◽  
Yan Qing Gong

A novel WSNS (wireless sensor network sniffer) is used to analyze and evaluate the Wireless Sensor Networks (WSN) effectively, which is designed to monitor IEEE 802.15.4 protocol frame of the Ethernet. Unlike the existed monitoring system, this design has higher efficiency and needs less resource. It is analyzed in this paper that the monitor network framework, time synchronization, and analysis program design. The results show that WSNS can real time display the monitored frame and dynamic changes of WSN topology.


Author(s):  
Shiva Kumar V. ◽  
Rajashree V. Biradar ◽  
V. C. Patil

the technology of wireless sensor-actuator networks (WSANs) is widely employed in the applications of IoT due to its wireless nature and it does not involve any wired structure. The wireless systems that are battery-driven can easily reconfigure the existing devices and sensors efficiently in the manufacturing units without employing any cable for power operation as well as for communication. The wireless sensor-actuator networks that are based on IEEE 802.15.4 consumes significantly less power. These networks are designed and built cost-effectively by considering the capacity of battery and expense so that they can be employed for many applications. The application of a typical wireless Autonomous Scheduling and Distributed Graph Routing (DDSR) has illustrated the reliability of employing its basic approaches for almost ten years and it consists of the accurate plot for routing and time-slotted channel hopping therefore ensuring accurate low-power wireless communication in the processing site. Officially declared by the controversial statements associated with the government of Greek experiences fourth industrialization. There is a huge requirement for sensor nodes link via WSAN in the industrial site. Also, reduced computational complexity is one of the drawbacks faced by the existing standards of WSAN which is caused because of their highly centralized traffic management systems and thereby significantly improves the consistency and accessibility of network operations at the expense of optimization. This research work enables the study of efficient Wireless DGR network management and also introduces an alternative for DDSR by enabling the sensor nodes to determine their data traffic routes for the transmission of data. When compared to the above two physical routing protocols, the proposed technique can drastically improve the performance of a network, throughput, and energy consumption under various aspects. Energy harvesting (EH) plays a significant role in the implementation of large IoT devices. The requirement for subsequent employment of power sources is eliminated by The efficient approach of Energy Harvesting and thereby providing a relatively close- perpetual working environment for the network. The structural concept of routing protocols that are designed for the IoT applications which are based on the wireless sensor has been transformed into "energy-harvesting-aware" from the concept of "energy-aware" because of the development in the Energy harvesting techniques. The main objective of the research work is to propose a routing protocol that is energy-harvesting-aware for the various network of IoT in case of acoustic sources of energy. A novel algorithm for routing called Autonomous Scheduling and Distributed Graph Routing (DDSR) has been developed and significantly improved by incorporating a new “energy back-off” factor. The proposed algorithm when integrated with various techniques of energy harvesting enhances the longevity of nodes, quality of service of a network under increased differential traffic, and factors influencing the accessibility of energy. The research work analyses the performance of the system for various constraints of energy harvesting. When compared to previous routing protocols the proposed algorithm achieves very good energy efficiency in the network of distributed IoT by fulfilling the requirements of QoS.


Sign in / Sign up

Export Citation Format

Share Document