Review of Three Lectures on Complexity and Black Holes by Leonard Susskind

2021 ◽  
Vol 52 (4) ◽  
pp. 6-10
Author(s):  
Frederic Green

The future prospects for anyone falling into a black hole are bleak. For one thing, there is no chance (according to our present state of knowledge) of ever getting out again. Worse, one is facing certain destruction when one meets the "singularity" (or its inconceivably dense physical manifestation, whatever that may be) inside. However, there is an "event horizon," the point of no return, separating the overly curious infalling astronaut from the doom he or she faces at the singularity. Suppose Alice the Astronaut wants to see what's behind the horizon (never mind the consequences). How much time would Alice have to look around and see what's happening, before reaching the end of her worldline? Conventional wisdom, until relatively recently, was that she would have some amount of time, perhaps hours. Passing the event horizon of a supermassive black hole would not seem like any kind of a milestone to the infalling individual; it is only an outside observer who would notice something out of the ordinary.

2002 ◽  
Vol 17 (15n17) ◽  
pp. 1047-1057 ◽  
Author(s):  
DANIEL SUDARSKY

We discuss the conditions under which one can expect to have the usual identification of black hole entropy with the area of the horizon. We then construct an example in which the actual presence of the event horizon on a given hypersurface depends on a quantum event in which a certain quantum variable acquires a value and which occurs in the future of the given hypersurface. This situation indicates that there is something fundamental that is missing in the most popular of the current approaches towards the construction of a theory of quantum gravity, or, alternatively, that there is something fundamental that we do not understand about entropy in general, or at least in its association with black holes.


2019 ◽  
pp. 151-158
Author(s):  
Nicholas Mee

The Event Horizon Telescope (EHT) is aiming to image the event horizon of the supermassive black hole at the centre of our galaxy. Andrea Ghez has mapped out the orbits of stars around this supermassive black hole and deduced it has a mass of four million Suns. An even bigger supermassive black hole of six billion solar masses lies at the centre of the M87 Galaxy. Shep Doeleman has marshalled several of the world’s radio telescopes to form the EHT with the aim of imaging the event horizons of these black holes.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Song Li ◽  
Ahmadjon A. Abdujabbarov ◽  
Wen-Biao Han

AbstractThe motion of photons around black holes determines the shape of shadow and match the ringdown properties of a perturbed black hole. Observations of shadows and ringdown waveforms will reveal the nature of black holes. In this paper, we study the motion of photons in a general parametrized metric beyond the Kerr hypothesis. We investigated the radius and frequency of the photon circular orbits on the equatorial plane and obtained fitted formula with varied parameters. The Lyapunov exponent which connects to the decay rate of the ringdown amplitude is also calculated. We also analyzed the shape of shadow with full parameters of the generally axisymmetric metric. Our results imply the potential constraint on black hole parameters by combining the Event Horizon Telescope and gravitational wave observations in the future.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dr. Rani Erum

Anti-Muslim emotions are not new for the world. It was present since the rise of Islam. West was furious after facing Muslims in battle ground and constantly defeated by those who were less equipped but obtained high morals. Initially they were frightened due to the novelty and unique approach of faith and its execution, therefore, they try to fabricate the original manuscripts, making false stories and molesting the last prophet’s life history. Islamophobia transformed after 9/11 and become more intensified and dangerous. It effected the common men worldwide without any boundaries. The respective research is based on the fact that hatred is the negative notion whether it related with nobility or wicked perception. It creates harmful effects on human psychology which subsequently created abusive mindset and actions. When any form of ideology identified as phobia means uncontrolled envy combine with the concept and turn it into a form of frenzied connotation. The fight between East and West was ancient which now convert among religions particularly Islam and others. The research is intend to provide the journey of anti-Islamism from past to present as well its significant elements and its present state. It also discusses the future prospects of clash of religions.  


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Author(s):  
Timothy Clifton

By studying objects outside our Solar System, we can observe star systems with far greater gravitational fields. ‘Extrasolar tests of gravity’ considers stars of different sizes that have undergone gravitational collapse, including white dwarfs, neutron stars, and black holes. A black hole consists of a region of space-time enclosed by a surface called an event horizon. The gravitational field of a black hole is so strong that anything that finds its way inside the event horizon can never escape. Other star systems considered are binary pulsars and triple star systems. With the invention of even more powerful telescopes, there will be more tantalizing possibilities for testing gravity in the future.


2020 ◽  
Vol 6 (12) ◽  
pp. eaaz1310 ◽  
Author(s):  
Michael D. Johnson ◽  
Alexandru Lupsasca ◽  
Andrew Strominger ◽  
George N. Wong ◽  
Shahar Hadar ◽  
...  

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050070
Author(s):  
Ujjal Debnath

We study the four-dimensional (i) modified Bardeen black hole, (ii) modified Hayward black hole, (iii) charged regular black hole and (iv) magnetically charged regular black hole. For modified Bardeen black hole and modified Hayward black hole, we found only one horizon (event horizon) and then we found some thermodynamic quantities like the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the event horizon. We here study the bounds of the above thermodynamic quantities for these black holes on the event horizon. Then, we examine the thermodynamics stability of the black holes with some conditions. Next, we studied the charged regular black hole and magnetically charged regular black hole and found two horizons (Cauchy and event horizons) of these black holes. Then, we found the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the Cauchy and event horizons. Then, we get some conditions for thermodynamic stability/instability of the black holes. We found the radius of the extremal horizon and Christodoulou–Ruffiini mass and then analyze the above thermodynamic quantities on the extremal horizon. We calculate the sum/subtraction, product, division and sum/subtraction of inverse of surface areas, entropies, irreducible masses, temperatures, Komar energies and specific heat capacities on both the horizons. From these, we found the bounds of the above quantities on the horizons.


Sign in / Sign up

Export Citation Format

Share Document