Expanding the Horizons of Wireless Sensing

2022 ◽  
Vol 25 (3) ◽  
pp. 38-42
Author(s):  
Agrim Gupta ◽  
Cédric Girerd ◽  
Manideep Dunna ◽  
Qiming Zhang ◽  
Raghav Subbaraman ◽  
...  

All interactions of objects, humans, and machines with the physical world are via contact forces. For instance, objects placed on a table exert their gravitational forces, and the contact interactions via our hands/feet are guided by the sense of contact force felt by our skin. Thus, the ability to sense the contact forces can allow us to measure all these ubiquitous interactions, enabling a myriad of applications. Furthermore, force sensors are a critical requirement for safer surgeries, which require measuring complex contact forces experienced as a surgical instrument interacts with the surrounding tissues during the surgical procedure. However, with currently available discrete point-force sensors, which require a battery to sense the forces and communicate the readings wirelessly, these ubiquitous sensing and surgical sensing applications are not practical. This motivates the development of new force sensors that can sense, and communicate wirelessly without consuming significant power to enable a battery-free design. In this magazine article, we present WiForce, a low-power wireless force sensor utilizing a joint sensing-communication paradigm. That is, instead of having separate sensing and communication blocks, WiForce directly transduces the force measurements onto variations in wireless signals reflecting WiForce from the sensor. This novel trans-duction mechanism also allows WiForce to generalize easily to a length continuum, where we can detect as well as localize forces acting on the continuum. We fabricate and test our sensor prototype in different scenarios, including testing beneath a tissue phantom, and obtain sub-N sensing and sub-mm localizing accuracies (0.34 N and 0.6 mm, respectively).

2014 ◽  
Vol 5 ◽  
pp. 407-412 ◽  
Author(s):  
Florian Pielmeier ◽  
Daniel Meuer ◽  
Daniel Schmid ◽  
Christoph Strunk ◽  
Franz J Giessibl

In frequency modulation atomic force microscopy (FM-AFM) the stability of the eigenfrequency of the force sensor is of key importance for highest precision force measurements. Here, we study the influence of temperature changes on the resonance frequency of force sensors made of quartz, in a temperature range from 4.8–48 K. The sensors are based on the qPlus and length extensional principle. The frequency variation with temperature T for all sensors is negative up to 30 K and on the order of 1 ppm/K, up to 13 K, where a distinct kink appears, it is linear. Furthermore, we characterize a new type of miniaturized qPlus sensor and confirm the theoretically predicted reduction in detector noise.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190580
Author(s):  
Thomas J. Böddeker ◽  
Stefan Karpitschka ◽  
Christian T. Kreis ◽  
Quentin Magdelaine ◽  
Oliver Bäumchen

Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct in vivo measurements of the dynamic forces of motile Chlamydomonas reinhardtii cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette’s position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette’s full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual Chlamydomonas reinhardtii cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.


2004 ◽  
Vol 126 (3) ◽  
pp. 443-452 ◽  
Author(s):  
Simon S. Park ◽  
Yusuf Altintas

This paper presents a dynamically compensated Spindle Integrated Force Sensor (SIFS) system to measure cutting forces. Piezo-electric force sensors are integrated into the stationary spindle housing. The structural dynamic model between the cutting forces acting on the tool tip and the measured forces at the spindle housing is identified. The system is first calibrated to compensate the influence of spindle run-out and unbalance at different speeds. Using the cutting force signals measured at the spindle housing, a Kalman Filter is designed to filter the influence of structural modes on the force measurements. The frequency bandwidth of the proposed sensor system is significantly increased with the proposed sensing and the signal processing method.


2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


2015 ◽  
Vol 105 (06) ◽  
pp. 377-383
Author(s):  
F. Klocke ◽  
R. Brocker ◽  
F. Vits ◽  
P. Mattfeld

Beim Vibrationsgleitschleifen wird der Werkstoffabtrag maßgeblich durch die vorherrschenden Kontaktkräfte zwischen dem Werkstück und den Schleifkörpern bestimmt. Dieser Fachartikel stellt ein Messsystem vor, mit dem die messtechnische Erfassung der Kontaktkräfte beim ungeführten Vibrationsgleitschleifen möglich ist. Ein Alleinstellungsmerkmal ist dabei die vollständig kabellose Ausführung des Messsystems. Somit wurden die Messergebnisse nicht durch Kabel beeinflusst, die üblicherweise für die Energieversorgung und Datenübertragung notwendig sind. Mithilfe dieses Messsystems wurde der Einfluss folgender Prozesseingangsgrößen systematisch untersucht: Schleifkörpergröße, Unwuchtmotordrehzahl, Versatzwinkel der Unwuchtgewichte sowie die Masse des unteren und oberen Unwuchtgewichts auf die Kontaktkräfte.   In vibratory finishing the material removal is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is able to measure contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction so that the measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight on the contact forces was investigated.


Author(s):  
H Qiao ◽  
S K Tso

In this paper, a general strategy for the precise robotic assembly of symmetrical regular polyhedral objects is presented, according to the character of the objects being assembled. The assembly operations with force sensors included are discussed. The general strategy of the operations with force sensors included is first developed. The assembly operations without relying on force sensors are next analysed. This method can be generally used in industry for the precise assembly operations for symmetric regular polyhedral objects. This paper covers the following items: An important problem demanding solution in the general robotic assembly operations with force sensors is presented. The general strategy investigation for the assembly operations with force sensors included is analysed. The mappings, firstly, between the directions of the contact forces and the location of the peg in the hole coordinate frame and, secondly, between the input forces and the actual movement of the peg in the hole coordinate frame are obtained. The general strategy investigation for the robotic assembly operations for symmetric regular polyhedral objects without using force sensors is designed on the basis of the mappings and the general principles in the strategy investigation. The experiments on the precise round and triangular peg—hole systems are presented to prove the validity of the general strategies designed. The strategy of assembly operations for other symmetric regular polyhedral objects without using force sensors is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kyungrim Kim ◽  
Jinwook Kim ◽  
Xiaoning Jiang ◽  
Taeyang Kim

In force measurement applications, a piezoelectric force sensor is one of the most popular sensors due to its advantages of low cost, linear response, and high sensitivity. Piezoelectric sensors effectively convert dynamic forces to electrical signals by the direct piezoelectric effect, but their use has been limited in measuring static forces due to the easily neutralized surface charge. To overcome this shortcoming, several static (either pure static or quasistatic) force sensing techniques using piezoelectric materials have been developed utilizing several unique parameters rather than just the surface charge produced by an applied force. The parameters for static force measurement include the resonance frequency, electrical impedance, decay time constant, and capacitance. In this review, we discuss the detailed mechanism of these piezoelectric-type, static force sensing methods that use more than the direct piezoelectric effect. We also highlight the challenges and potentials of each method for static force sensing applications.


2015 ◽  
Vol 780 ◽  
pp. 1-5
Author(s):  
Khairunizam Wan ◽  
H.E. Nabilah ◽  
Nor Farahiya ◽  
M. Hazwan Ali ◽  
Rashidah Suhaimi ◽  
...  

Modernization of human technologies overtime results the need of more freedom technology likes the use of natural interaction to replace a current trend interface devices such as joysticks, mice, keyboards and other related output devices. Dataglove is one of the interface devices that could serve a natural interaction between user and computers. In this paper, a dataglove called GloveMAP is introduced which has the capability of measuring fingertip force. The flexible force sensors are attached to the fingers location of the glove. Several object grasping experiments are conducted and the grasping force signals are measured. A Gaussian filter is introduced to smoothen the acquired force signals.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6042
Author(s):  
Zhijian Zhang ◽  
Youping Chen ◽  
Dailin Zhang

In robot teaching for contact tasks, it is necessary to not only accurately perceive the traction force exerted by hands, but also to perceive the contact force at the robot end. This paper develops a tandem force sensor to detect traction and contact forces. As a component of the tandem force sensor, a cylindrical traction force sensor is developed to detect the traction force applied by hands. Its structure is designed to be suitable for humans to operate, and the mechanical model of its cylinder-shaped elastic structural body has been analyzed. After calibration, the cylindrical traction force sensor is proven to be able to detect forces/moments with small errors. Then, a tandem force sensor is developed based on the developed cylindrical traction force sensor and a wrist force sensor. The robot teaching experiment of drawer switches were made and the results confirm that the developed traction force sensor is simple to operate and the tandem force sensor can achieve the perception of the traction and contact forces.


Sign in / Sign up

Export Citation Format

Share Document