A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations

Author(s):  
Adeline Kerviel ◽  
Mengyang Zhang ◽  
Nihal Altan-Bonnet

Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Thomas Labadie ◽  
Polly Roy

AbstractRecent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and observed that the majority of viruses are released in EVs, both in vitro and in the blood of infected animals. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome.Author summaryRecent discoveries of non-enveloped virus secreted in EVs opened the door to new developments in our understanding of the transmission and pathogenicity of these viruses. In particular, how these viruses hijack the host cellular secretion machinery, and the role of these EVs compared with free-virus particles remained to be explored. Here, we tackled these two aspects, by studying BTV, an emerging arthropod-borne virus causing epidemics worldwide. We showed that this virus is mainly released in EVs, in vivo and in the blood of infected animals, and that inhibition of the cell degradation machinery decreases the release of infectious EVs, but not free-virus particles. We found that BTV must neutralize the pH of lysosomes, which are important organelles of the cell degradation machinery, for efficient virus release in EVs. Our results highlight unique features for a virus released in EVs, explaining how BTV transits in lysosomes without being degraded. Interestingly, we observed that EVs are more infectious than free-virus particles, but only free-viruses are able to overcome the super-infection exclusion, which is a common cellular defense mechanism. In conclusion, our study stresses the dual role played by both forms, free and vesicular, in the virus life cycle.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Marianita Santiana ◽  
Nihal Altan-Bonnet

ABSTRACT Extracellular vesicles (EVs) are major vehicles for transporting viruses en bloc among hosts. While RNA viruses make up the great majority of transmission by EVs, in a recent article in mBio (mBio 10:e00379-19, 2019, https://mbio.asm.org/content/10/2/e00379-19.long), Morris-Love and colleagues revealed that a double-stranded DNA (dsDNA) virus, JC polyomavirus (JCPyV), a major cause of progressive multifocal leukoencephalopathy (PML), can be released from and transmitted to other glia in EVs. This mode of transmission appears to be highly infectious, independent of the free virus attachment and entry receptors LSTc and 5-HT2, and protected from neutralizing antibodies. This novel form of JCPyV transmission may potentially explain its dissemination into the central nervous system (CNS) and its increased virulence.


2021 ◽  
Vol 9 (5) ◽  
pp. 956
Author(s):  
Cihan Makbul ◽  
Vladimir Khayenko ◽  
Hans Michael Maric ◽  
Bettina Böttcher

Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2007 ◽  
Vol 81 (21) ◽  
pp. 12019-12028 ◽  
Author(s):  
Hilde M. van der Schaar ◽  
Michael J. Rust ◽  
Barry-Lee Waarts ◽  
Heidi van der Ende-Metselaar ◽  
Richard J. Kuhn ◽  
...  

ABSTRACT In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain S1 on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by infectivity assays, leading to an infectious unit-to-particle ratio of approximately 1:2,600 to 1:72,000, depending on the specific assays used. In order to explain this high ratio, we investigated the receptor binding and membrane fusion characteristics of single DENV particles in living cells using real-time fluorescence microscopy. For this purpose, DENV was labeled with the lipophilic fluorescent probe DiD (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt). The surface density of the DiD dye in the viral membrane was sufficiently high to largely quench the fluorescence intensity but still allowed clear detection of single virus particles. Fusion of the viral membrane with the cell membrane was evident as fluorescence dequenching. It was observed that DENV binds very inefficiently to the cells used, explaining at least in part the high infectious unit-to-particle ratio. The particles that did bind to the cells showed different types of transport behavior leading to membrane fusion in both the periphery and perinuclear regions of the cell. Membrane fusion was observed in 1 out of 6 bound virus particles, indicating that a substantial fraction of the virus has the capacity to fuse. DiD dequenching was completely inhibited by ammonium chloride, demonstrating that fusion occurs exclusively from within acidic endosomes.


Author(s):  
Sarah Knuckey ◽  
Joshua D. Fisher ◽  
Amanda M. Klasing ◽  
Tess Russo ◽  
Margaret L. Satterthwaite

The human rights movement is increasingly using interdisciplinary, multidisciplinary, mixed-methods, and quantitative factfinding. There has been too little analysis of these shifts. This article examines some of the opportunities and challenges of these methods, focusing on the investigation of socioeconomic human rights. By potentially expanding the amount and types of evidence available, factfinding's accuracy and persuasiveness can be strengthened, bolstering rights claims. However, such methods can also present significant challenges and may pose risks in individual cases and to the human rights movement generally. Interdisciplinary methods can be costly in human, financial, and technical resources; are sometimes challenging to implement; may divert limited resources from other work; can reify inequalities; may produce “expertise” that disempowers rightsholders; and could raise investigation standards to an infeasible or counterproductive level. This article includes lessons learned and questions to guide researchers and human rights advocates considering mixed-methods human rights factfinding. Expected final online publication date for the Annual Review of Law and Social Science, Volume 17 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Simeon Floyd

Conversation analysis is a method for the systematic study of interaction in terms of a sequential turn-taking system. Research in conversation analysis has traditionally focused on speakers of English, and it is still unclear to what extent the system observed in that research applies to conversation more generally around the world. However, as this method is now being applied to conversation in a broader range of languages, it is increasingly possible to address questions about the nature of interactional diversity across different speech communities. The approach of pragmatic typology first applies sequential analysis to conversation from different speech communities and then compares interactional patterns in ways analogous to how traditional linguistic typology compares morphosyntax. This article discusses contemporary literature in pragmatic typology, including single-language studies and multilanguage comparisons reflecting both qualitative and quantitative methods. This research finds that microanalysis of face-to-face interaction can identify both universal trends and culture-specific interactional tendencies. Expected final online publication date for the Annual Review of Anthropology, Volume 50 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Yonit Maroudas-Sacks ◽  
Kinneret Keren

Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process across scales to form viable organisms under variable conditions. Achieving large-scale coordination requires feedback between mechanical and biochemical processes, spanning all levels of organization and relating the emerging patterns with the mechanisms driving their formation. In this review, we highlight the role of mechanics in the patterning process, emphasizing the active and synergistic manner in which mechanical processes participate in developmental patterning rather than merely following a program set by biochemical signals. We discuss the value of applying a coarse-grained approach toward understanding this complex interplay, which considers the large-scale dynamics and feedback as well as complementing the reductionist approach focused on molecular detail. A central challenge in this approach is identifying relevant coarse-grained variables and developing effective theories that can serve as a basis for an integrated framework for understanding this remarkable pattern-formation process. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kristen Kobaly ◽  
Caroline S. Kim ◽  
Susan J. Mandel

Thyroid nodules are common in the general population, with higher prevalence in women and with advancing age. Approximately 5% of thyroid nodules are malignant; the majority of this subset represents papillary thyroid cancer. Ultrasonography is the standard technique to assess the underlying thyroid parenchyma, characterize the features of thyroid nodules, and evaluate for abnormal cervical lymphadenopathy. Various risk stratification systems exist to categorize the risk of malignancy based on the ultrasound appearance of a thyroid nodule. Nodules are selected for fine-needle aspiration biopsy on the basis of ultrasound features, size, and high-risk clinical history. Cytology results are classified by the Bethesda system into six categories ranging from benign to malignant. When cytology is indeterminate, molecular testing can further risk-stratify patients for observation or surgery. Surveillance is indicated for nodules with benign cytology, indeterminate cytology with reassuring molecular testing, or non-biopsied nodules without a benign sonographic appearance. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kazunori Omote ◽  
Frederik H. Verbrugge ◽  
Barry A. Borlaug

Approximately half of all patients with heart failure (HF) have a preserved ejection fraction, and the prevalence is growing rapidly given the aging population in many countries and the rising prevalence of obesity, diabetes, and hypertension. Functional capacity and quality of life are severely impaired in heart failure with preserved ejection fraction (HFpEF), and morbidity and mortality are high. In striking contrast to HF with reduced ejection fraction, there are few effective treatments currently identified for HFpEF, and these are limited to decongestion by diuretics, promotion of a healthy active lifestyle, and management of comorbidities. Improved phenotyping of subgroups within the overall HFpEF population might enhance individualization of treatment. This review focuses on the current understanding of the pathophysiologic mechanisms underlying HFpEF and treatment strategies for this complex syndrome. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document