End Plate Effects on the Performance of PEMFCs During Cold Start Process

Author(s):  
Xiongbiao Wan ◽  
Zhigang Zhan ◽  
panxing Jiang ◽  
Yuan Yu ◽  
Chenglong Wang ◽  
...  

Abstract The efficient, fast, and reliable cold start of polymer electrolyte membrane fuel cells is one of the major challenges for their commercialization. In this paper a segmented single cell is used to simulate the end plate effects of the stack and to investigate how the effects work. The results demonstrate that the end cells in the stack have the lowest performance, the reasons for which include the lowest temperature of the cells themselves, and probably also ice blocking in part an area inside the MEA, or in the channels, or in both together. In order to mitigate or even eliminate the influence of ice formation in the end cells, the temperature of the end plates should be increased to -10℃ or above when liquid water is generated. A high inlet gas flow rate facilitates the discharge of supercooled water and is conducive to successful cold start.

Author(s):  
A. Chukwujekwu Okafor ◽  
Hector-Martins Mogbo

In this paper, the effects of gas flow rates, and catalyst loading on polymer electrolyte membrane fuel cell (PEMFC) performance was investigated using a 50cm2 active area fuel cell fixture with serpentine flow field channels machined into poco graphite blocks. Membrane Electrode Assemblies (MEAs) with catalyst and gas flow rates at two levels each (0.5mg/cm2, 1mg/cm2; 0.3L/min, 0.5L/min respectively) were tested at 60°C without humidification. The cell performance was analyzed by taking AC Impedance, TAFEL plot, open circuit voltage, and area specific resistance measurements. It was observed that MEAs with lower gas flow rate had lesser cell resistance compared to MEAs with a higher gas flow rate. TAFEL plot shows the highest exchange current density value of −2.05 mAcm2 for MEA with 0.5mg/cm2 catalyst loading operated at reactant gas flow rate of 0.3L/min signifying it had the least activation loss and fastest reaction rate. Open circuit voltage curve shows a higher output voltage and lesser voltage decay rate for MEAs tested at higher gas flow rates.


Author(s):  
Anthony C. Okafor ◽  
Hector-Martins C. Mogbo

In this paper, the effects of gas flow rates and catalyst loading on polymer electrolyte membrane fuel cell (PEMFC) performance was investigated using a 50 cm2active area fuel cell fixture with serpentine flow field channels machined into poco graphite blocks. Membrane electrode assemblies (MEAs) with catalyst and gas flow rates at two levels each (0.5 mg/cm2, 1 mg/cm2; 0.3 l/min, 0.5 l/min, respectively) were tested at 60 °C without humidification. The cell performance was analyzed by taking ac impedance, Tafel plot, open circuit voltage, and area specific resistance measurements. It was observed that MEAs with lower gas flow rate had lesser cell resistance compared to MEAs with a higher gas flow rate. Tafel plot shows the highest exchange current density value of 10−2.05 mA cm2 for MEA with 0.5 mg/cm2 catalyst loading tested at reactant gas flow rate of 0.3 l/min signifying it had the least activation loss and fastest reaction rate. Open circuit voltage-time curve shows a higher output voltage and lesser voltage decay rate for MEAs tested at higher gas flow rates.


Author(s):  
Yutaka Tabe ◽  
Masataka Saito ◽  
Ryosuke Ichikawa ◽  
Takemi Chikahisa

In Polymer electrolyte membrane fuel cells (PEFCs), freezing of produced water induces the extreme deterioration of cell performance below zero. This phenomenon is a serious problem in cold regions and is needed to be solved to achieve the practical use of PEFCs. In this study, we investigated ice distribution at the cold start in a PEFC using an optical microscope and a CRYO-SEM to clarify the freezing mechanism. The observation results showed that the cold start at −10°C makes ice at the interface between the cathode catalyst layer (CL) and the micro porous layer of gas diffusion layer. Little ice was, however, observed in the cold start at −20°C, which indicated the ice formation inside the CL. The CRYO-SEM observation was conducted at −20°C to investigate the ice formation inside the CL, and this identified the effects of the current density and the cathode gas species on the ice distribution.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


1998 ◽  
Vol 63 (6) ◽  
pp. 881-898
Author(s):  
Otakar Trnka ◽  
Miloslav Hartman

Three simple computational techniques are proposed and employed to demonstrate the effect of fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous stirred tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas-solid reaction occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuations on reactant concentrations at the exit of the CSTR is shown in four different situations.


Sign in / Sign up

Export Citation Format

Share Document