scholarly journals Optimization of the Interface Between Catalyst Layer and Proton Exchange Membrane via rolled technique

Author(s):  
Shumeng Guan ◽  
Fen Zhou ◽  
Shaojie Du ◽  
Mu Pan

Abstract Optimization of the interface between the catalyst layer (CL) and the proton exchange membrane (PEM) plays an important role in performance enhancement in proton exchange membrane fuel cells (PEMFCs). Here, a rolled technique was used to optimize the PEM|CL interface to obtain a smooth CL surface with decreased roughness from 0.347 to 0.266 μm due to the reduction of protrusions after the rolled process. Advantages of the optimized PEM|CL interface formed after decal transfer method were carefully evaluated. First, the internal resistance of the rolled CL is significantly reduced from 61.5 to 47.5 mΩ cm2@2000 mA/cm2, which is ascribed to the higher contact area between CL and PEM. Meanwhile, owning to the alleviation of liquid water accumulation at the interface, the oxygen transport resistance at no back pressure of CL dropped from 0.21 to 0.15 s/cm. The relieved ohm polarization and mass transfer polarization promote a 28.5% increase of performance. Rolled technique with proper calendrer roll space could result in an optimized interface with well-maintained internal structural integrity of CL. However, a lower calendrer roll gap will damage the structure of CL and have a negative effect on the interface optimization.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2975
Author(s):  
Zikhona Nondudule ◽  
Jessica Chamier ◽  
Mahabubur Chowdhury

To decrease the cost of fuel cell manufacturing, the amount of platinum (Pt) in the catalyst layer needs to be reduced. In this study, ionomer gradient membrane electrode assemblies (MEAs) were designed to reduce Pt loading without sacrificing performance and lifetime. A two-layer stratification of the cathode was achieved with varying ratios of 28 wt. % ionomer in the inner layer, on the membrane, and 24 wt. % on the outer layer, coated onto the inner layer. To study the MEA performance, the electrochemical surface area (ECSA), polarization curves, and electrochemical impedance spectroscopy (EIS) responses were evaluated under 20, 60, and 100% relative humidity (RH). The stratified MEA Pt loading was reduced by 12% while maintaining commercial equivalent performance. The optimal two-layer design was achieved when the Pt loading ratio between the layers was 1:6 (inner:outer layer). This MEA showed the highest ECSA and performance at 0.65 V with reduced mass transport losses. The integrity of stratified MEAs with lower Pt loading was evaluated with potential cycling and proved more durable than the monolayer MEA equivalent. The higher ionomer loading adjacent to the membrane and the bi-layer interface of the stratified catalyst layer (CL) increased moisture in the cathode CL, decreasing the degradation rate. Using ionomer stratification to decrease the Pt loading in an MEA yielded a better performance compared to the monolayer MEA design. This study, therefore, contributes to the development of more durable, cost-effective MEAs for low-temperature proton exchange membrane fuel cells.


2021 ◽  
Vol 490 ◽  
pp. 229531
Author(s):  
Yurii V. Yakovlev ◽  
Yevheniia V. Lobko ◽  
Maryna Vorokhta ◽  
Jaroslava Nováková ◽  
Michal Mazur ◽  
...  

Author(s):  
N. Akhtar ◽  
P. J. A. M. Kerkhof

The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a catalyst layer (CL). The liquid water saturation profiles have been calculated for varying structural and physical properties, i.e., porosity, permeability, thickness and contact angle for each of these layers. It has been observed that each layer has its own role in determining the liquid water saturation within the CL. Among all the layers, the GDL is the most influential layer that governs the transport phenomena within the PEMFC cathode. Besides, the thickness of the CL also affects the liquid water saturation and it should be carefully controlled.


Author(s):  
Utku Gulan ◽  
Hasmet Turkoglu ◽  
Irfan Ar

In this study, the fluid flow and cell performance in cathode side of a proton exchange membrane (PEM) fuel cell were numerically analyzed. The problem domain consists of cathode gas channel, cathode gas diffusion layer, and cathode catalyst layer. The equations governing the motion of air, concentration of oxygen, and electrochemical reactions were numerically solved. A computer program was developed based on control volume method and SIMPLE algorithm. The mathematical model and program developed were tested by comparing the results of numerical simulations with the results from literature. Simulations were performed for different values of inlet Reynolds number and inlet oxygen mole fraction at different operation temperatures. Using the results of these simulations, the effects of these parameters on the flow, oxygen concentration distribution, current density and power density were analyzed. The simulations showed that the oxygen concentration in the catalyst layer increases with increasing Reynolds number and hence the current density and power density of the PEM fuel cell also increases. Analysis of the data obtained from simulations also shows that current density and power density of the PEM fuel cell increases with increasing operation temperature. It is also observed that increasing the inlet oxygen mole fraction increases the current density and power density.


2014 ◽  
Vol 246 ◽  
pp. 63-67 ◽  
Author(s):  
Huaneng Su ◽  
Ting-Chu Jao ◽  
Sivakumar Pasupathi ◽  
Bernard Jan Bladergroen ◽  
Vladimir Linkov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document