scholarly journals Simulating Pitting Corrosion in AM 316L Microstructures Through Phase Field Methods and Computational Modeling

Author(s):  
Patrick Brewick

Abstract This work investigates how the crystallographic features of additive manufactured (AM) microstructures impact the pitting corrosion process through computational simulations of phase field models. Crystallographic influence is explored by introducing orientation dependencies into the corrosion potentials and elastic constants of the model through microstructural data provided from AM 316L samples. Comparisons of evolved pit morphologies and stress responses are made to a standard homogeneous, semi-circular model to better highlight how the complexity of AM microstructures affects pit evolution and stress concentrations. The results illustrate that AM-informed modeling cases produce larger, deeper pits with numerous locations of elevated stress concentrations along the pit front.

2005 ◽  
Vol 19 (31) ◽  
pp. 4525-4565 ◽  
Author(s):  
NIKOLAS PROVATAS ◽  
MICHAEL GREENWOOD ◽  
BADRINARAYAN ATHREYA ◽  
NIGEL GOLDENFELD ◽  
JONATHAN DANTZIG

We review the use of phase field methods in solidification modeling, describing their fundamental connection to the physics of phase transformations. The inherent challenges associated with simulating phase field models across multiple length and time scales are discussed, as well as how these challenges have been addressed in recent years. Specifically, we discuss new asymptotic analysis methods that enable phase field equations to emulate the sharp interface limit even in the case of quite diffuse phase-field interfaces, an aspect that greatly reduces computation times. We then review recent dynamic adaptive mesh refinement algorithms that have enabled a dramatic increase in the scale of microstructures that can be simulated using phase-field models, at significantly reduced simulation times. Combined with new methods of asymptotic analysis, the adaptive mesh approach provides a truly multi-scale capability for simulating solidification microstructures from nanometers up to centimeters. Finally, we present recent results on 2D and 3D dendritic growth and dendritic spacing selection, which have been made using phase-field models solved with adaptive mesh refinement.


AIP Advances ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 065124
Author(s):  
M. Kwakkel ◽  
M. Fernandino ◽  
C. A. Dorao

2010 ◽  
Vol 638-642 ◽  
pp. 2724-2729
Author(s):  
Yoshiyuki Saito ◽  
Chitoshi Masuda

Thermodynamic stability of Grain boundary in materials under severe plastic deformation was simulated by the Monte Carlo and the phase field methods. Computer simulations were performed on 3-dimensional textured materials. The Monte Carlo simulation results were qualitatively in good agreement with those by the phase field model. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. The ARB experiments were performed for pure Al and Al alloys-sheets in order to validate the computer simulation results concerning the grain boundary stability of textured materials. With use of the Monte Carlo and the phase field methods. Effect of grain boundary mobilises and interface energy given by the computer simulations.


Sign in / Sign up

Export Citation Format

Share Document