Controlled Tensile Strain of Ge Films Hetero-Epitaxially Grown on Si Substrates Using E-Beam Evaporator

2014 ◽  
Vol 4 (1) ◽  
pp. P12-P14 ◽  
Author(s):  
B. Ki ◽  
K. H. Kim ◽  
J. Oh
Keyword(s):  
2003 ◽  
Vol 770 ◽  
Author(s):  
Douglas D. Cannon ◽  
Samerkhae Jongthammanurak ◽  
Jifeng Liu ◽  
David T. Danielson ◽  
Kazumi Wada ◽  
...  

AbstractWe have fabricated the first CMOS process compatible high-responsivity Ge p-i-n diodes for 1.55 μm wavelengths. The thermal expansion mismatch between Ge epilayers and Si substrates was used to engineer tensile strain upon cooling from the growth temperature. This 0.2% tensile strain results in a lowering of the direct transition energy in Ge by 30 meV and extends the responsivity curve to near 1.6μm.


2016 ◽  
Vol 16 (5) ◽  
pp. 5239-5242 ◽  
Author(s):  
Bugeun Ki ◽  
Kyung Ho Kim ◽  
Hyungjun Kim ◽  
Chulwon Lee ◽  
Yong-Hoon Cho ◽  
...  

2011 ◽  
Vol 470 ◽  
pp. 146-151 ◽  
Author(s):  
Osamu Nakatsuka ◽  
Shotaro Takeuchi ◽  
Yosuke Shimura ◽  
Akira Sakai ◽  
Shigeaki Zaima

We have investigated the growth and crystalline structures of Ge1-xSnx buffer and tensile-strained Ge layers for future use in CMOS technology. We have demonstrated that strain relaxed Ge1-xSnx layers with an Sn content of 12.3% and 9.2% can be grown on Ge and Si substrates, respectively. We achieved a tensile-strain value of 0.71 % in Ge layers on a Ge0.932Sn0.068 buffer layer. We have also investigated the effects of Sn incorporation into Ge on the electrical properties of Ge1-xSnx heteroepitaxial layers.


2010 ◽  
Vol 518 (9) ◽  
pp. 2466-2469 ◽  
Author(s):  
A. Boucherif ◽  
N.P. Blanchard ◽  
P. Regreny ◽  
O. Marty ◽  
G. Guillot ◽  
...  

2007 ◽  
Vol 1012 ◽  
Author(s):  
Jens Eberhardt ◽  
Heinrich Metzner ◽  
Rüdiger Goldhahn ◽  
Florian Hudert ◽  
Kristian Schulz ◽  
...  

AbstractUsing molecular beams, polycrystalline thin CuInS2 (CIS) films of different thicknesses were grown on Si substrates covered with a sputtered Mo-buffer layer. Systematic photoluminescence and photoreflectance measurements were performed to investigate the influence of strain - introduced during growth - on the optical properties. The transition energy of the free A-exciton (FXA) decreases with increasing tensile strain caused by (i) increasing thickness of the Mo buffer layer and (ii) decreasing thickness of the CIS layer. Furthermore, the energetic splittings between FXA, FXB, and FXC increase with increasing tensile strain. When combined with X-ray diffraction data, the oscillator strengths of the excitonic transitions yield information on the strain distribution within the films.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
R. W. Ditchfield ◽  
A. G. Cullis

An energy analyzing transmission electron microscope of the Möllenstedt type was used to measure the electron energy loss spectra given by various layer structures to a spatial resolution of 100Å. The technique is an important, method of microanalysis and has been used to identify secondary phases in alloys and impurity particles incorporated into epitaxial Si films.Layers Formed by the Epitaxial Growth of Ge on Si Substrates Following studies of the epitaxial growth of Ge on (111) Si substrates by vacuum evaporation, it was important to investigate the possible mixing of these two elements in the grown layers. These layers consisted of separate growth centres which were often triangular and oriented in the same sense, as shown in Fig. 1.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


Sign in / Sign up

Export Citation Format

Share Document