scholarly journals Review—Latest Trends and Advancement in Porous Carbon for Biowaste Organization and Utilization

Author(s):  
Kunal Kulkarni ◽  
Utkarsh Chadha ◽  
Shreya Yadav ◽  
D M Tarun ◽  
Thenmukilan K G ◽  
...  

Abstract Bio-derived activated porous carbon is readily used because it exhibits high surface area, excellent electrical conductivity, high stability, environment-friendly nature, and easy availability. All of these properties make it a unique and a perfect applicant for energy storage devices. Biowastes such as corncobs, walnut shells, human hair, jute, oil seeds, and bamboo are utilized as precursors in manufacturing porous carbon. The use of bio materials is preferred because of their abundance and biodegradable nature. The production of porous carbon was carried out through pyrolysis with the help of acid, primarily KOH, as the active substance. The ambient temperature for conducting pyrolysis is 400-800oC. Pyrolysis can be either fast or slow, with fast pyrolysis being helpful in most experiments. Food wastes like peels and shells are among the most significant biowaste sources alongside farm waste like rice husks, coconut shells, etc., which are not just waste and can be utilized for sustainable living. The porous carbon is formed from food waste from toxicity reducer in wastewater to for a supercapacitor or a bio anode in a microbial fuel cell. It is oneway sustainable development and is now highly economical. Moreover, in scientific aspects, their validity in a field and lowered expenses in some cases, the benefits of their usage may vary. This paper aims to extensively review all of the research conducted for Bio-waste utilization and its conversion to porous carbon for further use in super capacitance applications

2021 ◽  
Vol 22 (9) ◽  
pp. 4498
Author(s):  
Md. Motiar Rahman ◽  
Mst Gulshan Ara ◽  
Mohammad Abdul Alim ◽  
Md. Sahab Uddin ◽  
Agnieszka Najda ◽  
...  

Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.


2021 ◽  
Vol 44 (1) ◽  
pp. 129-140
Author(s):  
Agha Kashif ◽  
Sumaira Aftab ◽  
Muhammad Javaid ◽  
Hafiz Muhammad Awais

Abstract Topological index (TI) is a numerical invariant that helps to understand the natural relationship of the physicochemical properties of a compound in its primary structure. George Polya introduced the idea of counting polynomials in chemical graph theory and Winer made the use of TI in chemical compounds working on the paraffin's boiling point. The literature of the topological indices and counting polynomials of different graphs has grown extremely since that time. Metal-organic network (MON) is a group of different chemical compounds that consist of metal ions and organic ligands to represent unique morphology, excellent chemical stability, large pore volume, and very high surface area. Working on structures, characteristics, and synthesis of various MONs show the importance of these networks with useful applications, such as sensing of different gases, assessment of chemicals, environmental hazard, heterogeneous catalysis, gas and energy storage devices of excellent material, conducting solids, super-capacitors and catalysis for the purification, and separation of different gases. The above-mentioned properties and physical stability of these MONs become a most discussed topic nowadays. In this paper, we calculate the M-polynomials and various TIs based on these polynomials for two different MONs. A comparison among the aforesaid topological indices is also included to represent the better one.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Seong Min Ji ◽  
Anuj Kumar

Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Soochan Kim ◽  
Simindokht Shirvani-Arani ◽  
Sungsik Choi ◽  
Misuk Cho ◽  
Youngkwan Lee

AbstractLi–S batteries have attracted considerable interest as next-generation energy storage devices owing to high energy density and the natural abundance of sulfur. However, the practical applications of Li–S batteries are hampered by the shuttle effect of soluble lithium polysulfides (LPS), which results in low cycle stability. Herein, a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3N4 (t-C3N4) embedded with Fe3O4 nanospheres. t-C3N4 exhibits high surface area and strong anchoring of LPS, and the Fe3O4/t-C3N4 accelerates the anchoring of LPS and improves the electronic pathways. The combination of these materials leads to remarkable battery performance with 400% improvement in a specific capacity and a low capacity decay per cycle of 0.02% at 2 C over 1000 cycles, and stable cycling at 6.4 mg cm−2 for high-sulfur-loading cathode.


2016 ◽  
Vol 8 (37) ◽  
pp. 24918-24923 ◽  
Author(s):  
Amir A. Bakhtiary Davijani ◽  
H. Clive Liu ◽  
Kishor Gupta ◽  
Satish Kumar

2020 ◽  
Vol 43 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Hafiz Muhammad Awais ◽  
Muhammad Jamal ◽  
Muhammad Javaid

AbstractMetal-organic frameworks (MOFs) are porous materials formed by strong bonds between metal ions and organic ligands to represent very high surface area, large pore volume, excellent chemical stability and unique morphology. Work on synthesis, structures and characteristics of many MOFs shows the importance of these frameworks with versatile applications, such as energy storage devices of excellent electrode materials, gas storage, heterogeneous catalysis, environmental hazard, assessment of chemicals and sensing of different gases. A topological property or index is a numerical invariant that predicts the physicochemical properties of the chemical compounds of the underlying molecular graph or framework. Wiener (1947) created the practice of the topological indices (TI’s) in organic molecules with the reference of boiling point of paraffin. In this paper, we study the two different metal-organic frameworks with respect to the number of increasing layers with metal and organic ligands as well. We also compute the generalized Zagreb index and generalized Zagreb connection index of these frameworks. Moreover, the various indices and connection indices are obtained by using the aforesaid generalized versions. At the end, a comparison is also included between the indices and connection indices with the help of numerical values and their 3D plots.


2020 ◽  
Vol 3 (1) ◽  
pp. 2-10
Author(s):  
Mário César Albuquerque de Oliveira ◽  
Helinando Pequeno de Oliveira

The development of high-performance supercapacitors requires efforts in materials design and nanotechnology to provide more efficient electrodes with higher electrochemical window, capacitance, energy and power density. In terms of candidates for electrodes, the high surface area of graphene (2630 m2g-1) makes this carbon derivative a widely explored building block for supercapacitor electrodes. Herein, it is presented a review about the state-of-art in surface modification of graphene derivatives with the aim of avoiding restacking processes in nanosheets. It allows that Faradaic and non-Faradaic mechanisms can be synergically explored to reach not only superior results in power density but in energy density, a typical drawback in supercapacitors (by comparison with conventional batteries), introducing graphene-based supercapacitors as promising candidates for energy storage devices.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6512-6547
Author(s):  
Youngsang Chun ◽  
Soo Kweon Lee ◽  
Hah Young Yoo ◽  
Seung Wook Kim

Biochar is highly valuable in various applications due to its unique physicochemical properties such as high thermal efficiency, high surface area, surface functional groups, and crystal structure. The goal of this review is to establish a systematic strategy of biochar production for applications in various fields. First, the characteristics of biomass as feedstock for biochar production and their classification are discussed according to the types present in nature. Second, the technology for biochar production and the production yield are examined. In thermochemical conversion for biochar production, five major types of pyrolysis processes are suggested, and the production yield is evaluated according to pyrolysis parameters (feedstock pretreatment, operating temperature, heating rate, residence time, carrier gas). In addition, biochar production from pyrolysis of mixed feedstock has recently been suggested; thus, the evaluation of the production yield from co-pyrolysis is included. Finally, analytical techniques for biochar characterization are investigated and the application of biochar in various fields is considered, such as in adsorbents, energy storage devices, and catalysts.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2589
Author(s):  
Antonella Arena ◽  
Caterina Branca ◽  
Carmine Ciofi ◽  
Giovanna D’Angelo ◽  
Valentino Romano ◽  
...  

Flexible energy storage devices and supercapacitors in particular have become very attractive due to the growing demand for wearable consumer devices. To obtain supercapacitors with improved performance, it is useful to resort to hybrid electrodes, usually nanocomposites, that combine the excellent charge transport properties and high surface area of nanostructured carbon with the electrochemical activity of suitable metal oxides or conjugated polymers. In this work, electrochemically active conducting inks are developed starting from commercially available polypyrrole and graphene nanoplatelets blended with dodecylbenzenesulfonic acid. Films prepared by applying the developed inks are characterized by means of Raman measurements, Fourier Transform Infrared (FTIR) analysis, and Atomic Force Microscopy (AFM) investigations. Planar supercapacitor prototypes with an active area below ten mm2 are then prepared by applying the inks onto transparency sheets, separated by an ion-permeable nafion layer impregnated with lithium hexafluorophospate, and characterized by means of electrical measurements. According to the experimental results, the devices show both pseudocapacitive and electric double layer behavior, resulting in areal capacitance that, when obtained from about 100 mFcm−2 in the sample with polypyrrole-based electrodes, increases by a factor of about 3 when using electrodes deposited from inks containing polypyrrole and graphene nanoplateles.


Sign in / Sign up

Export Citation Format

Share Document