Dual effects of a phorbol ester on calcium-dependent chloride secretion by T84 epithelial cells

1992 ◽  
Vol 262 (1) ◽  
pp. C15-C22 ◽  
Author(s):  
U. Kachintorn ◽  
P. Vongkovit ◽  
M. Vajanaphanich ◽  
S. Dinh ◽  
K. E. Barrett ◽  
...  

Ca(2+)-dependent secretagogues (e.g., carbachol, histamine, ionomycin, and 4-bromo-A23187) have relatively transient effects on chloride secretion, even if there is a sustained increase in cytosolic calcium ([Ca2+]i) (as for the ionophores). Because these agents increase both [Ca2+]i and protein kinase C (PKC) activity, chloride secretion might be stimulated by [Ca2+]i and terminated by PKC activity. We tested the effect of a PKC activator, phorbol 12-myristate 13-acetate (PMA), on Cl- secretion by T84 cell monolayers by measuring short-circuit current (Isc). PMA alone had no effect on Isc but potentiated increases in Isc when added 10 min or less before Ca(2+)-dependent secretagogues. Chelation of [Ca2+]i with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid inhibited the increases both in [Ca2+]i and Isc induced by carbachol with or without brief PMA pretreatment. Longer preincubations with PMA inhibited Isc responses to Ca(2+)-dependent secretagogues, even when increased [Ca2+]i was sustained by ionophores. Inhibitors of PKC could reverse the inhibitory effect of PMA but did not reverse the potentiating effect. The effects of PMA on Cl- secretion were reproduced by 1,2-dioctanoyl-sn-glycerol and were mirrored by effects on K+ channel opening. Thus PMA has dual effects on chloride secretion. Initially, it exerts a stimulatory action and subsequently an inhibitory action. The stimulatory effect only occurs if Ca(2+)-dependent secretion is ongoing. The inhibitory effect of PMA is mediated by PKC and cannot be overcome by increasing [Ca2+]i.

1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2005 ◽  
Vol 288 (5) ◽  
pp. G956-G963 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method.86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated86Rb efflux but not carbachol-stimulated86Rb efflux. Zn had no effect on bumetanide-sensitive86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


1993 ◽  
Vol 264 (2) ◽  
pp. G252-G260 ◽  
Author(s):  
V. Calderaro ◽  
E. Chiosi ◽  
R. Greco ◽  
A. M. Spina ◽  
A. Giovane ◽  
...  

Effects of Ca2+ on adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion were investigated in intact mucosa and isolated crypt cells of rabbit descending colon. Addition of 10 microM prostaglandin (PG)E2 or forskolin to tissues incubated in Ca(2+)-free medium increased the size of short-circuit current (Isc) and Cl- secretion as estimated by unidirectional 36Cl flux measurements (net flux = -2.31 +/- 0.24 vs. -1.22 +/- 0.10 mueq.h-1.cm-2, n = 4, P < 0.001). Addition of 10 microM PGE2 to tissues incubated in 1.2 mM Ca2+ Ringer induced a 7-fold increase in mean cAMP level, whereas it produced an 11-fold increase in tissues exposed to Ca(2+)-free medium. Membrane preparations from whole mucosa incubated in Ca(2+)-free medium displayed a cyclic nucleotide phosphodiesterase activity significantly lower than controls (18.76 +/- 0.54 vs. 31.20 +/- 0.39 pmol cAMP. mg protein-1.min-1, means +/- SE, n = 4, P < 0.001). Ca2+ removal also affected adenylate cyclase (AC) responsiveness to agonists; AC activity increased in controls by 54 and 226% after stimulation with 10 microM PGE2 and forskolin, respectively, but it increased more (77 and 325%, respectively) after incubation in Ca(2+)-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (1) ◽  
pp. C148-C160 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
N. D. Vaziri

The ability of a Cl-secreting epithelium to support net secretion of an anion other than a halide was investigated with 35SO4 flux measurements across the isolated, short-circuited rabbit distal colon. In most experiments, 36Cl fluxes were simultaneously measured to validate the secretory capacity of the tissues. Serosal addition of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP, 0.5 mM) stimulated a sustained net secretion of SO4 (about -3.0 nmol.cm-2.h-1 from a 0.20 mM solution) via an increase in the serosal-to-mucosal unidirectional flux, whereas Ca ionophore A-23187 (1 microM, serosal) produced a more transient stimulation of SO4 and Cl secretion. Net adenosine 3',5'-cyclic monophosphate (cAMP)-dependent SO4 and Cl secretion were strongly voltage sensitive, principally through the potential dependence of the serosal-to-mucosal fluxes, indicating an electrogenic transport process. Symmetrical replacement of either Na, K, or Cl inhibited cAMP-dependent SO4 secretion, whereas HCO3-free buffers had no effect on SO4 secretion. Serosal bumetanide (50 microM) or furosemide (100 microM) reduced DBcAMP-stimulated SO4 and Cl secretion, whereas serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (50 microM) blocked DBcAMP-induced SO4 secretion while enhancing net Cl secretion and short-circuit current. Mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid partially inhibited SO4 secretion and completely inhibited Cl secretion. It is concluded that secretagogue-stimulated SO4 secretion, like Cl secretion, may be an electrogenic process mediated by diffusive efflux through an apical anion conductance. Cellular accumulation of SO4 across the basolateral membrane appears to be achieved by a mechanism that is distinct from that employed by Cl.


2015 ◽  
Vol 37 (1) ◽  
pp. 306-320 ◽  
Author(s):  
Yuan Hao ◽  
Cindy S.T. Cheung ◽  
Wallace C.Y. Yip ◽  
Wing-hung Ko

Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC) in a human bronchial epithelial cell line (16HBE14o-), and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i) and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172), but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS), Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA) inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF) cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.


1990 ◽  
Vol 258 (6) ◽  
pp. L369-L377 ◽  
Author(s):  
J. J. Smith ◽  
J. D. McCann ◽  
M. J. Welsh

In canine airway epithelial cells, bradykinin increases intracellular concentrations of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], cytosolic calcium concentration ([Ca2+]c), and adenosine 3',5'-cyclic monophosphate (cAMP). To determine the role of these second messengers in bradykinin-stimulated Cl- secretion, we studied the secretory response to this peptide using canine tracheal monolayers mounted in Ussing chambers. Bradykinin stimulated Cl- secretion [measured as short-circuit current (Isc)] when added to submucosal or mucosal surfaces; however, secretory responses differed substantially. Submucosal addition of bradykinin induced a biphasic increase in secretion; mucosal addition induced a monophasic increase in secretion. Both responses were mediated by B2 receptors. We show that activation of bradykinin receptors can stimulate Cl- secretion in two ways. 1) Bradykinin added to either surface stimulates prostaglandin synthesis and release at the basolateral surface. This leads to activation of prostaglandin E2-sensitive receptors on the basolateral surface that are coupled to cAMP production and an increase in apical membrane Cl- conductance. 2) In addition, bradykinin added to the submucosal surface increases Ins(1,4,5)P3 and [Ca2+]c levels, which enhance basolateral K+ conductance and the electrical driving force for apical Cl- exit. Whereas secretion requires activation of apical Cl- channels, the data show that Cl- secretion can also be modulated by activation of basolateral K+ channels. These data indicate that bradykinin-induced transepithelial Cl- secretion is mediated by two independent, second messenger pathways. These results provide the first evidence for expression of both pathways in a polar fashion in an epithelial monolayer.


1986 ◽  
Vol 250 (4) ◽  
pp. C646-C650 ◽  
Author(s):  
S. R. Shorofsky ◽  
M. Field ◽  
H. A. Fozzard

Na-selective microelectrodes were employed to investigate the mechanism of Cl secretion by canine tracheal epithelium. In control tissues with a mean short-circuit current (Isc) of 30.1 microA/cm2, the intracellular Na activity (aiNa) was 10.7 mM. Following steady-state stimulation of Cl secretion with epinephrine (Isc = 126.4 microA/cm2), aiNa was 21.3 mM. These data indicate that there is sufficient energy in the Na gradient to drive Cl secretion by this tissue. When analyzed with simple kinetic models for the Na-K pump, they also suggest that the basolateral entry step involves the Na-K-2Cl cotransporter.


1980 ◽  
Vol 239 (3) ◽  
pp. G151-G160 ◽  
Author(s):  
W. L. McLennan ◽  
T. E. Machen ◽  
T. Zeuthen

Gastric mucosae from frogs and newborn pigs were used for in vitro investigation of the effects of Ba2+ (10 microM to 7 mM) on transepithelial potential difference (PD), resistance and conductance (G), short-circuit current (Isc), H+ secretion, and transepithelial fluxes of 36Cl-. Ba2+ in the serosal, but not the mucosal, solution of both preparations caused PD, G, Isc, and Cl- secretion (JnetCl, Isc conditions) to decrease, while H+ secretion remained constant. Because the oxyntic cells were most likely the site of action for Ba2+, these cells must have the capacity to secrete Cl- in excess of H+ ions. The inhibitory effect of Ba2+ was not due to competition in the serosal membrane by Ba2+ for surface charges, Ca2+ sites, Na+ sites, or Cl- sites. When [K+] in both the mucosal and serosal solutions or in just the serosal solution ([K+]s) alone was increased to 10 mM, the inhibitory effects of low [Ba2+] were reduced; however, at higher [Ba2+], Isc was stimulated. At least part of the Ba2+ effect seems to be due to blockage of K+ channels in the serosal membrane of oxyntic cells. High [K+]s also caused decreased PD and Isc (but increased G) with no change in H+ secretion. It is proposed that during Isc conditions, JnetCl involves a neutral Na+-dependent accumulation of Cl- within oxyntic cells and a passive, conductive efflux fromthe cells into the mucosal solution. Ba2+ and high [K+] may alter this transport by depolarizing and, under certain conditions, hyperpolarizing intracellular voltage.


1984 ◽  
Vol 246 (5) ◽  
pp. R741-R746 ◽  
Author(s):  
S. A. May ◽  
K. J. Degnan

Catecholamine regulation of the Cl- secretion rate (short-circuit current, Isc) and adenosine 3',5'-cyclic monophosphate (cAMP) levels of the opercular epithelium was investigated by using 3-isobutyl-1-methylxanthine (IBMX), forskolin, and adrenergic agonists. In this tissue alpha-adrenergic agonists inhibit, and beta-adrenergic agonists stimulate, the Isc (J. Physiol. London 294: 483-495, 1979). IBMX and forskolin stimulated the Isc 125 and 85%, respectively, and simultaneously produced 2.5- and 70.0-fold elevations in the cAMP levels, respectively. These findings confirm previous observations demonstrating that stimulation of the Isc in this tissue is mediated by elevations in cAMP (J. Comp. Physiol. B 145: 29-35, 1981). Isoproterenol, a beta-agonist, had no effect on the Isc of either IBMX- or forskolin-stimulated tissues but increased the cAMP level an additional 5.8-fold in IBMX-stimulated tissues. Clonidine, an alpha-agonist, inhibited the Isc in IBMX-stimulated tissues only and had no effect on cAMP levels in either IBMX- or forskolin-stimulated tissues. These findings demonstrate that catecholamine-induced inhibition of the Isc can occur while the cAMP level remains elevated, indicating that this effect is not mediated by lowering cAMP levels. This observation is strong evidence for a cAMP-independent mechanism for catecholamine-induced inhibition of Cl- secretion in the opercular and similar epithelia.


1993 ◽  
Vol 265 (2) ◽  
pp. L170-L177 ◽  
Author(s):  
M. Yamaya ◽  
T. Ohrui ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

Surface epithelium and gland cells from human trachea were cultured on porous-bottom inserts and loaded with fura 2 to permit measurement of the intracellular calcium concentration ([Ca2+]i). Short-circuit current (Isc), an index of transepithelial active ion transport, was measured on cells from the same cultures. Surface epithelial [Ca2+]i of 82 +/- 15 nM was increased transiently by isoproterenol, histamine, and bradykinin with maximal increases of 88 +/- 17, 480 +/- 149, and 978 +/- 214 nM (n = 15), respectively. Baseline [Ca2+]i in cultured gland cells of 68 +/- 11 nM was increased transiently by isoproterenol, histamine, methacholine, and bradykinin with maximal increases of 105 +/- 19, 233 +/- 47, 327 +/- 121, and 634 +/- 151 nM (n = 17-21), respectively. In both cell types, mediators that increased [Ca2+]i also increased Isc with a time course identical to the increase in [Ca2+]i. Pretreatment with the calcium chelator, 1,2-bis-(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid, acetoxymethyl ester (BAPTA-AM), had no effect on basal Isc or transepithelial resistance but markedly inhibited both the Isc and [Ca2+]i responses to agonists. Forskolin (10(-5) M), 3-isobutyl-1-methylxanthine (10(-3) M), dibutyryl adenosine 3',5'-cyclic monophosphate (10(-3) M), and 8-(4-chlorophenylthio)-cAMP (10(-3) M) had no or only trivial effects on Isc and [Ca2+]i. We suggest that mediators increase Isc across human airway epithelium by activating Ca-dependent basolateral K channels, resulting in hyperpolarization and an increased driving force for Cl exit through apical membrane Cl channels.


Sign in / Sign up

Export Citation Format

Share Document