scholarly journals Skeletal muscle mitochondrial adaptations induced by long-term cigarette smoke exposure

Author(s):  
Stephen T Decker ◽  
Oh Sung Kwon ◽  
Jia Zhao ◽  
John R. Hoidal ◽  
Tomas P. Huecksteadt ◽  
...  

Because patients with Chronic Obstructive Pulmonary Disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8-months of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a two-fold increase in the oxidative stress marker, 4-HNE, (p < 0.05) compared with control mice. This was accompanied by significant decreases in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (~60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that mice exposed to cigarette smoke for 8 months, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including free-fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Yokota ◽  
Shintaro Kinugawa ◽  
Kagami Hirabayashi ◽  
Mayumi Yamato ◽  
Shingo Takada ◽  
...  

AbstractOxidative stress plays a role in the progression of chronic heart failure (CHF). We investigated whether systemic oxidative stress is linked to exercise intolerance and skeletal muscle abnormalities in patients with CHF. We recruited 30 males: 17 CHF patients, 13 healthy controls. All participants underwent blood testing, cardiopulmonary exercise testing, and magnetic resonance spectroscopy (MRS). The serum thiobarbituric acid reactive substances (TBARS; lipid peroxides) were significantly higher (5.1 ± 1.1 vs. 3.4 ± 0.7 μmol/L, p < 0.01) and the serum activities of superoxide dismutase (SOD), an antioxidant, were significantly lower (9.2 ± 7.1 vs. 29.4 ± 9.7 units/L, p < 0.01) in the CHF cohort versus the controls. The oxygen uptake (VO2) at both peak exercise and anaerobic threshold was significantly depressed in the CHF patients; the parameters of aerobic capacity were inversely correlated with serum TBARS and positively correlated with serum SOD activity. The phosphocreatine loss during plantar-flexion exercise and intramyocellular lipid content in the participants' leg muscle measured by 31phosphorus- and 1proton-MRS, respectively, were significantly elevated in the CHF patients, indicating abnormal intramuscular energy metabolism. Notably, the skeletal muscle abnormalities were related to the enhanced systemic oxidative stress. Our analyses revealed that systemic oxidative stress is related to lowered whole-body aerobic capacity and skeletal muscle dysfunction in CHF patients.


2021 ◽  
pp. 1-7
Author(s):  
Oktay Aslaner

<b><i>Objective:</i></b> Cigarette smoking is a life-threatening habit that has rapidly spread in every socioeconomic part of the public worldwide. There exist mechanisms of nicotine delivery available to use in the hope of halting cigarette smoking, and the electronic cigarette (EC) is one of the common methods used for tobacco smoking replacement. This study aimed to investigate experimentally the oxidative effects of tobacco smoke and EC smoke which contain nicotine. <b><i>Method:</i></b> We constructed smoke circuit rooms for exposing the rats to EC or tobacco smoke. Three groups were created, the control group (<i>N</i> = 8); the electronic cigarette group (<i>N</i> = 8), exposure to electronic cigarette smoke for 2 h per day; and the tobacco group (<i>N</i> = 8), exposure to traditional cigarette smoke for 2 h per day. After the first and second week of exposure, blood samples were obtained, and serum oxidative stress index (OSI), paraoxonase 1 (PON1) activity, and prolidase levels were evaluated. <b><i>Results:</i></b> Higher values of OSI and prolidase levels were detected in the first week of EC or tobacco smoke exposure in both study groups (<i>p</i> &#x3c; 0.001) when compared with the control group, and partial decrements were observed in the second week. By contrast, elevated PON1 levels were observed in the second week after EC or tobacco smoke exposure. The highest OSI levels were observed in the tobacco smoke group (<i>p</i> &#x3c; 0.001). The lowest values of PON1 levels were detected in the first week of the electronic cigarette smoke group, and this decremental value was statistically different than normal, the second week of the electronic cigarette smoke group, the first week of the traditional cigarette smoke exposure group, and the second week of the traditional cigarette smoke exposure group values (<i>p</i> &#x3c; 0.000). <b><i>Conclusion:</i></b> Our results indicate that EC smoke induced oxidative stress. Therefore, ECs are potentially risky for human health and can lead to important health problems.


2019 ◽  
Author(s):  
Patrick J Murphy ◽  
Jingtao Guo ◽  
Timothy G Jenkins ◽  
Emma R James ◽  
John R Hoidal ◽  
...  

SUMMARYPaternal cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring, but the mechanism has not been identified. This study used mouse models to evaluate: 1) what impact paternal CS exposure has on sperm DNA methylation (DNAme), 2) whether sperm DNAme changes persist after CS exposure ends, 3) the degree to which DNAme and gene expression changes occur in offspring and 4) the mechanism underlying impacts of CS exposure. We demonstrate that CS exposure induces sperm DNAme changes that are partially corrected within 28 days of removal from CS exposure. Additionally, paternal smoking causes changes in neural DNAme and gene expression in offspring. Remarkably, the effects of CS exposure are largely recapitulated in oxidative stress-compromised Nrf2-/- mice and their offspring, independent of paternal smoking. These results demonstrate that paternal CS exposure impacts offspring phenotype and that oxidative stress underlies CS induced heritable epigenetic changes.


2011 ◽  
Vol 110 (4) ◽  
pp. 935-942 ◽  
Author(s):  
Ashley J. Smuder ◽  
Andreas N. Kavazis ◽  
Kisuk Min ◽  
Scott K. Powers

Doxorubicin (Dox) is a potent antitumor agent used in cancer treatment. Unfortunately, Dox is myotoxic and results in significant reductions in skeletal muscle mass and function. Complete knowledge of the mechanism(s) by which Dox induces toxicity in skeletal muscle is incomplete, but it is established that Dox-induced toxicity is associated with increased generation of reactive oxygen species and oxidative damage within muscle fibers. Since muscular exercise promotes the expression of numerous cytoprotective proteins (e.g., antioxidant enzymes, heat shock protein 72), we hypothesized that muscular exercise will attenuate Dox-induced damage in exercise-trained muscle fibers. To test this postulate, Sprague-Dawley rats were randomly assigned to the following groups: sedentary, exercise, sedentary with Dox, or exercise with Dox. Our results show increased oxidative stress and activation of cellular proteases (calpain and caspase-3) in skeletal muscle of animals treated with Dox. Importantly, our findings reveal that exercise can prevent the Dox-induced oxidative damage and protease activation in the trained muscle. This exercise-induced protection against Dox-induced toxicity may be due, at least in part, to an exercise-induced increase in muscle levels of antioxidant enzymes and heat shock protein 72. Together, these novel results demonstrate that muscular exercise is a useful countermeasure that can protect skeletal muscle against Dox treatment-induced oxidative stress and protease activation in skeletal muscles.


2020 ◽  
Vol 105 (11) ◽  
Author(s):  
Christoph Hoffmann ◽  
Patrick Schneeweiss ◽  
Elko Randrianarisoa ◽  
Günter Schnauder ◽  
Lisa Kappler ◽  
...  

Abstract Context Exercise training improves glycemic control and increases mitochondrial content and respiration capacity in skeletal muscle. Rodent studies suggest that training increases mitochondrial respiration in adipose tissue. Objective To assess the effects of endurance training on respiratory capacities of human skeletal muscle and abdominal subcutaneous adipose tissue and to study the correlation with improvement in insulin sensitivity. Design Using high-resolution respirometry, we analyzed biopsies from 25 sedentary (VO2 peak 25.1 ± 4.0 VO2 mL/[kg*min]) subjects (16 female, 9 male; 29.8 ± 8.4 years) with obesity (body mass index [BMI] 31.5 ± 4.3 kg/m2), who did not have diabetes. They performed a supervised endurance training over 8 weeks (3 × 1 hour/week at 80% VO2 peak). Results Based on change in insulin sensitivity after intervention (using the Matsuda insulin sensitivity index [ISIMats]), subjects were grouped in subgroups as responders (&gt;15% increase in ISIMats) and low-responders. The response in ISIMats was correlated to a reduction of subcutaneous and visceral adipose tissue volume. Both groups exhibited similar increases in fitness, respiratory capacity, and abundance of mitochondrial enzymes in skeletal muscle fibers. Respiratory capacities in subcutaneous adipose tissue were not altered by the intervention. Compared with muscle fibers, adipose tissue respiration showed a preference for β-oxidation and complex II substrates. Respiratory capacities were higher in adipose tissue from female participants. Conclusion Our data show that the improvement of peripheral insulin sensitivity after endurance training is not directly related to an increase in mitochondrial respiratory capacities in skeletal muscle and occurs without an increase in the respiratory capacity of subcutaneous adipose tissue.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 643 ◽  
Author(s):  
Junrui Cheng ◽  
Baxter Miller ◽  
Emilio Balbuena ◽  
Abdulkerim Eroglu

Background: Oxidative stress plays a critical role in lung cancer progression. Carotenoids are efficient antioxidants. The objective of this study was to explore the efficacy of all-trans retinoic acid (ATRA) and carotenoids in cigarette smoke-induced oxidative stress within A549 human lung cancer epithelial cells. Methods: A549 cells were pretreated with 1-nM, 10-nM, 100-nM, 1-μM and 10-μM ATRA, β-carotene (BC) and lycopene for 24 h, followed by exposure to cigarette smoke using a smoking chamber. Results: The OxyBlot analysis showed that smoking significantly increased oxidative stress, which was inhibited by lycopene at 1 nM and 10 nM (p < 0.05). In the cells exposed to smoke, lycopene increased 8-oxoguanine DNA glycosylase (OGG1) expression at 1 nM, 10 nM, 100 nM, and 1 μM (p < 0.05), but not at 10 μM. Lycopene at lower doses also improved Nei like DNA glycosylases (NEIL1, NEIL2, NEIL3), and connexin-43 (Cx43) protein levels (p < 0.05). Interestingly, lycopene at lower concentrations promoted OGG1 expression within the cells exposed to smoke to an even greater extent than the cells not exposed to smoke (p < 0.01). This may be attributed to the increased SR-B1 mRNA levels with cigarette smoke exposure (p < 0.05). Conclusions: Lycopene treatment at a lower dosage could inhibit smoke-induced oxidative stress and promote genome stability. These novel findings will shed light on the molecular mechanism of lycopene action against lung cancer.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e80471 ◽  
Author(s):  
Michelle J. Hansen ◽  
Hui Chen ◽  
Jessica E. Jones ◽  
Shenna Y. Langenbach ◽  
Ross Vlahos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document