III. Senescent enteric nervous system: lessons from extraintestinal sites and nonmammalian species

2002 ◽  
Vol 283 (5) ◽  
pp. G1020-G1026 ◽  
Author(s):  
John W. Wiley

Functional changes in GI motility associated with advanced age include slowing of gastric emptying, decreased peristalsis, and slowing of colonic transit. These changes appear to be associated with region-specific loss of neurons and impaired function. The mechanism(s) underlying physiological aging are likely to be multifactorial. Alterations in specific signal transduction pathways have been reported at the level of the receptor and postreceptor events including kinase expression and function, mitochondrial function, and activation of the apoptosis cascade. Advanced age is associated with increased oxidative stress and its concomitant effects on cellular function. Whereas no specific genes have been causally linked to life span in mammals, studies involving nonmammalian species suggest that specific genes are involved in determining life span and age-related changes in cellular function. Caloric restriction is the only intervention shown to slow aging in a variety of species. Recent studies implicate a possible role for an insulin/IGF-I cascade in the region- and tissue-specific changes associated with physiological aging.

Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 2920-2932 ◽  
Author(s):  
William E. Sonntag ◽  
Christy S. Carter ◽  
Yuji Ikeno ◽  
Kari Ekenstedt ◽  
Cathy S. Carlson ◽  
...  

Abstract Disruption of the insulin/IGF-I pathway increases life span in invertebrates. However, effects of decreased IGF-I signaling in mammalian models remain controversial. Using a rodent model with a specific and limited deficiency of GH and IGF-I, we report that GH and IGF-I deficiency throughout life [GH deficiency (GHD)] has no effect on life span compared with normal, heterozygous animals. However, treatment of GHD animals with GH from 4–14 wk of age [adult-onset (AO) GHD] increased median and maximal life span by 14% and 12%, respectively. Analysis of end-of-life pathology indicated that deficiency of these hormones decreased tumor incidence in GHD and AO-GHD animals (18 and 30%, respectively) compared with heterozygous animals and decreased the severity of, and eliminated deaths from, chronic nephropathy. Total disease burden was reduced by 24% in GHD and 16% in AO-GHD animals. Interestingly, the incidence of intracranial hemorrhage increased by 154 and 198% in GHD and AO-GHD animals, respectively, compared with heterozygous animals. Deaths from intracranial hemorrhage in AO-GHD animals were delayed by 14 wk accounting for the increased life span compared with GHD animals. The presence of GH and IGF-I was necessary to maximize reproductive fitness and growth of offspring early in life and to maintain cognitive function and prevent cartilage degeneration later in life. The diverse effects of GH and IGF-I are consistent with a model of antagonistic pleiotropy and suggest that, in response to a deficiency of these hormones, increased life span is derived at the risk of functional impairments and tissue degeneration.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Jake Willows ◽  
Morganne Robinson ◽  
Harrison Cyr ◽  
Gargi Mishra ◽  
Peter Reifsnyder ◽  
...  

Energy homeostasis and adipose tissue metabolism are regulated in large part through peripheral sympathetic nerve innervation of metabolically important tissues and organs. This neural communication from the brain to adipose tissues results in release of the neurotransmitter norepinephrine that regulates energy expenditure through modulation of lipolysis, adipogenesis, ‘browning’ (development of brown adipocytes in white adipose depots), and non-shivering thermogenesis. Subcutaneous white adipose tissue (scWAT) is an energy storing tissue that is highly plastic, responding to metabolic need by changing mass and cellularity, as well as responding to challenges (including cold temperature, exercise, fasting) by modifying neural activity and metabolism. Within scWAT lies a dense bed of nerves and blood vessels that are integrated closely, and in large part, rely on one another to function properly. Even if not directly innervating the blood vessels themselves (as is the case with capillaries), neurites that appear to innervate single adipocytes use these blood vessels as scaffolding to traverse the tissue. We have recently demonstrated that under pathological conditions (obesity and aging), scWAT innervation decreases through a process termed ‘adipose neuropathy’. With advanced age the small fiber peripheral nerve endings in adipose die back, including reducing contact with adipose-resident blood vessels (as observed previously in the C57BL6/J mouse). This likely poses a physiological challenge for metabolism and for vascular or adipose tissue health and function. For this work, we compared C57BL6/J mice with the more genetically diverse HET3 mouse model, established for the NIA’s Intervention Testing Program to more accurately represent the variability of age-related mortality/morbidity. We investigated incidence of peripheral neuropathy with aging (skin, scWAT muscle) as well as changes to the neurovascular supply of scWAT across several ages in both males and females. We also investigated the anti-aging drug Rapamycin as a potential means to prevent or reduce adipose neuropathy. We found that HET3 mice display a reduced neuropathy phenotype compared to inbred C56BL6/J mice. Importantly, the nerve die-back around blood vessels was not observed in the HET3 model. However, male HET3 mice did reveal neuropathic phenotypes by 62wks of age, characterized by decreased mechanoreception in hind paw skin, reduced NMJ occupation, and decreased expression of the Schwann cell marker Sox10 in scWAT. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126wks) when they began to show stronger phenotypes than males (excluding Sox10 analysis.) Despite its success as a longevity treatment in mice, rapamycin had little to no effect on reducing or preventing the onset of adipose neuropathy.


2012 ◽  
Vol 303 (2) ◽  
pp. E213-E222 ◽  
Author(s):  
Sarah Moellendorf ◽  
Claudia Kessels ◽  
Lena Peiseler ◽  
Annika Raupach ◽  
Christoph Jacoby ◽  
...  

Insulin-like growth factor (IGF-I) signaling has been implicated to play an important role in regulation of cardiac growth, hypertrophy, and contractile function and has been linked to the development of age-related congestive heart failure. Here, we address the question to what extent cardiomyocyte-specific IGF-I signaling is essential for maintenance of the structural and functional integrity of the adult murine heart. To investigate the effects of IGF-I signaling in the adult heart without confounding effects due to IGF-I overexpression or adaptation during embryonic and early postnatal development, we inactivated the IGF-I receptor (IGF-IR) by a 4-hydroxytamoxifen-inducible Cre recombinase in adult cardiac myocytes. Efficient inactivation of the IGF-IR (iCMIGF-IRKO) as assessed by Western analysis and real-time PCR went along with reduced IGF-I-dependent Akt and GSK3β phosphorylation. Functional analysis by conductance manometry and MRI revealed no functional alterations in young adult iCMIGF-IRKO mice (age 3 mo). However, when induced in aging mice (11 mo) diastolic cardiac function was depressed. To address the question whether insulin signaling might compensate for the defective IGF-IR signaling, we inactivated β-cells by streptozotocin. However, the diabetes-associated functional depression was similar in control and iCMIGF-IRKO mice. Similarly, analysis of the cardiac gene expression profile on 44K microarrays did not reveal activation of overt adaptive processes. Endogenous IGF-IR signaling is required for conservation of cardiac function of the aging heart, but not for the integrity of cardiac structure and function of young hearts.


Science ◽  
2021 ◽  
Vol 373 (6554) ◽  
pp. eabc8479
Author(s):  
M. Grunewald ◽  
S. Kumar ◽  
H. Sharife ◽  
E. Volinsky ◽  
A. Gileles-Hillel ◽  
...  

Aging is an established risk factor for vascular diseases, but vascular aging itself may contribute to the progressive deterioration of organ function. Here, we show in aged mice that vascular endothelial growth factor (VEGF) signaling insufficiency, which is caused by increased production of decoy receptors, may drive physiological aging across multiple organ systems. Increasing VEGF signaling prevented age-associated capillary loss, improved organ perfusion and function, and extended life span. Healthier aging was evidenced by favorable metabolism and body composition and amelioration of aging-associated pathologies including hepatic steatosis, sarcopenia, osteoporosis, “inflammaging” (age-related multiorgan chronic inflammation), and increased tumor burden. These results indicate that VEGF signaling insufficiency affects organ aging in mice and suggest that modulating this pathway may result in increased mammalian life span and improved overall health.


2021 ◽  
Author(s):  
Cellas A Hayes ◽  
Brandon G Ashmore ◽  
Akshaya Vijayasankar ◽  
Jessica P Marshall ◽  
Nicole M Ashpole

The age-related reduction in circulating levels of insulin-like growth factor-1 (IGF-1) is associated with increased risk of stroke and neurodegenerative diseases in advanced age. Numerous reports highlight behavioral and physiological deficits in blood-brain barrier function and neurovascular communication when IGF-1 levels are low. Administration of exogenous IGF- 1 reduces the extent of tissue damage and sensorimotor deficits in animal models of ischemic stroke, highlighting the critical role of IGF-1 as a regulator of neurovascular health. The beneficial effects of IGF-1 in the nervous system are often attributed to direct actions on neurons; however, glial cells and the cerebrovasculature are also modulated by IGF-1, and systemic reductions in circulating IGF-1 likely influence the viability and function of the entire neuro-glio-vascular unit. We recently observed that reduced IGF-1 led to impaired glutamate handling in astrocytes. Considering glutamate excitotoxicity is one of the main drivers of neurodegeneration following ischemic stroke, the age-related loss of IGF-1 may also compromise neural function indirectly by altering the function of supporting glia and vasculature. In this study, we assess and compare the effects of IGF-1 signaling on glutamate-induced toxicity and reactive oxygen species (ROS)-produced oxidative stress in primary neuron, astrocyte, and brain microvascular endothelial cell cultures. Our findings verify that neurons are highly susceptible to excitotoxicity, in comparison to astrocytes or endothelial cells, and that a prolonged reduction in IGFR activation increases the extent of toxicity. Moreover, prolonged IGFR inhibition increased the susceptibility of astrocytes to glutamate-induced toxicity and lessened their ability to protect neurons from excitotoxicity. Thus, IGF-1 promotes neuronal survival by acting directly on neurons and indirectly on astrocytes. Despite increased resistance to excitotoxic death, both astrocytes and cerebrovascular endothelial cells exhibit acute increases in glutamate-induced ROS production and mitochondrial dysfunction when IGFR is inhibited at the time of glutamate stimulation. Together these data highlight that each cell type within the neuro-glio-vascular unit differentially responds to stress when IGF-1 signaling was impaired. Therefore, the reductions in circulating IGF-1 observed in advanced age are likely detrimental to the health and function of the entire neuro-glio-vascular unit.


2021 ◽  
Vol 13 ◽  
Author(s):  
Shuichi Yanai ◽  
Shogo Endo

Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.


2021 ◽  
Vol 13 ◽  
Author(s):  
Cellas A. Hayes ◽  
Brandon G. Ashmore ◽  
Akshaya Vijayasankar ◽  
Jessica P. Marshall ◽  
Nicole M. Ashpole

The age-related reduction in circulating levels of insulin-like growth factor-1 (IGF-1) is associated with increased risk of stroke and neurodegenerative diseases in advanced age. Numerous reports highlight behavioral and physiological deficits in blood-brain barrier function and neurovascular communication when IGF-1 levels are low. Administration of exogenous IGF-1 reduces the extent of tissue damage and sensorimotor deficits in animal models of ischemic stroke, highlighting the critical role of IGF-1 as a regulator of neurovascular health. The beneficial effects of IGF-1 in the nervous system are often attributed to direct actions on neurons; however, glial cells and the cerebrovasculature are also modulated by IGF-1, and systemic reductions in circulating IGF-1 likely influence the viability and function of the entire neuro-glio-vascular unit. We recently observed that reduced IGF-1 led to impaired glutamate handling in astrocytes. Considering glutamate excitotoxicity is one of the main drivers of neurodegeneration following ischemic stroke, the age-related loss of IGF-1 may also compromise neural function indirectly by altering the function of supporting glia and vasculature. In this study, we assess and compare the effects of IGF-1 signaling on glutamate-induced toxicity and reactive oxygen species (ROS)-produced oxidative stress in primary neuron, astrocyte, and brain microvascular endothelial cell cultures. Our findings verify that neurons are highly susceptible to excitotoxicity, in comparison to astrocytes or endothelial cells, and that a prolonged reduction in IGFR activation increases the extent of toxicity. Moreover, prolonged IGFR inhibition increased the susceptibility of astrocytes to glutamate-induced toxicity and lessened their ability to protect neurons from excitotoxicity. Thus, IGF-1 promotes neuronal survival by acting directly on neurons and indirectly on astrocytes. Despite increased resistance to excitotoxic death, both astrocytes and cerebrovascular endothelial cells exhibit acute increases in glutamate-induced ROS production and mitochondrial dysfunction when IGFR is inhibited at the time of glutamate stimulation. Together these data highlight that each cell type within the neuro-glio-vascular unit differentially responds to stress when IGF-1 signaling was impaired. Therefore, the reductions in circulating IGF-1 observed in advanced age are likely detrimental to the health and function of the entire neuro-glio-vascular unit.


Gerontology ◽  
2021 ◽  
pp. 1-14
Author(s):  
Huan Chen ◽  
Ousheng Liu ◽  
Sijia Chen ◽  
Yueying Zhou

With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatyana V. Sukhacheva ◽  
Natalia V. Nizyaeva ◽  
Maria V. Samsonova ◽  
Andrey L. Cherniaev ◽  
Artem A. Burov ◽  
...  

AbstractTelocytes are interstitial cells with long, thin processes by which they contact each other and form a network in the interstitium. Myocardial remodeling of adult patients with different forms of atrial fibrillation (AF) occurs with an increase in fibrosis, age-related isolated atrial amyloidosis (IAA), cardiomyocyte hypertrophy and myolysis. This study aimed to determine the ultrastructural and immunohistochemical features of cardiac telocytes in patients with AF and AF + IAA. IAA associated with accumulation of atrial natriuretic factor was detected in 4.3–25% biopsies of left (LAA) and 21.7–41.7% of right (RAA) atrial appendage myocardium. Telocytes were identified at ultrastructural level more often in AF + IAA, than in AF group and correlated with AF duration and mitral valve regurgitation. Telocytes had ultrastructural signs of synthetic, proliferative, and phagocytic activity. Telocytes corresponded to CD117+, vimentin+, CD34+, CD44+, CD68+, CD16+, S100-, CD105- immunophenotype. No significant differences in telocytes morphology and immunophenotype were found in patients with various forms of AF. CD68-positive cells were detected more often in AF + IAA than AF group. We assume that in aged AF + IAA patients remodeling of atrial myocardium provoked transformation of telocytes into “transitional forms” combining the morphological and immunohistochemical features with signs of fibroblast-, histiocyte- and endotheliocyte-like cells.


Sign in / Sign up

Export Citation Format

Share Document