Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury

2007 ◽  
Vol 292 (1) ◽  
pp. H503-H509 ◽  
Author(s):  
Yasushi Sakata ◽  
Jian-Wen Dong ◽  
Jesus G. Vallejo ◽  
Chien-Hua Huang ◽  
J. Scott Baker ◽  
...  

Production of proinflammatory cytokines contributes to cardiac dysfunction during ischemia-reperfusion. The principal mechanism responsible for the induction of this innate stress response during periods of myocardial ischemia-reperfusion remains unknown. Toll-like receptor 2 (TLR2) is a highly conserved pattern recognition receptor that has been implicated in the innate immune response to a variety of pathogens. However, TLR2 may also mediate inflammation in response to noninfectious injury. We therefore hypothesized that TLR2 is essential for modulating myocardial inflammation and left ventricular (LV) function during ischemia-reperfusion injury. Susceptibility to myocardial ischemia-reperfusion injury following ischemia-reperfusion was determined in Langendorff-perfused hearts isolated from wild-type mice and mice deficient in TLR2 (TLR2D) and Toll interleukin receptor domain-containing adaptor protein. After ischemia-reperfusion, contractile performance was significantly impaired in hearts from wild-type mice as demonstrated by a lower recovery of LV developed pressure relative to TLR2D hearts. Creatinine kinase levels were similar in both groups after reperfusion. Contractile dysfunction in wild-type hearts was associated with elevated cardiac levels of TNF and IL-1β. Ischemia-reperfusion-induced LV dysfunction was reversed by treatment with the recombinant TNF blocking protein etanercept. These studies show for the first time that TLR2 signaling importantly contributes to the LV dysfunction that occurs following ischemia-reperfusion. Thus disruption of TLR2-mediated signaling may be helpful to induce immediate or delayed myocardial protection from ischemia-reperfusion injury.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Zuo ◽  
R Tian ◽  
Q Chen ◽  
L Wang ◽  
Q Gu ◽  
...  

Abstract Background Myocardial ischemia-reperfusion injury (MIRI) is one of the leading causes of human death. Nod-like receptor protein-3 (NLRP3) inflammasome signaling pathway involved in the pathogenesis of MIRI. However, the upstream regulating mechanisms of NLRP3 at molecular level remains unknown. Purpose This study investigated the role of microRNA330-5p (miR-330-5p) in NLRP3 inflammasome-mediated MIRI and the associated mechanism. Methods Mice underwent 45 min occlusion of the left anterior descending coronary artery followed by different times of reperfusion. Myocardial miR-330-5p expression was examined by quantitative polymerase chain reaction (PCR), and miR-330-5p antagomir and agomir were used to regulate miR-330-5p expression. To evaluate the role of miR-330-5p in MIRI, Evans Blue (EB)/2, 3, 5-triphenyltetrazolium chloride (TTC) staining, echocardiography, and immunoblotting were used to assess infarct volume, cardiac function, and NLRP3 inflammasome activation, respectively. Further, in vitro myocardial ischemia-reperfusion model was established in cardiomyocytes (H9C2 cell line). A luciferase binding assay was used to examine whether miR-330-5p directly bound to T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM3). Finally, the role of miR-330-5p/TIM3 axis in regulating apoptosis and NLRP3 inflammasome formation were evaluated using flow cytometry assay and immunofluorescence staining. Results Compared to the model group, inhibiting miR-330-5p significantly aggravated MIRI resulting in increased infarct volume (58.09±6.39% vs. 37.82±8.86%, P<0.01) and more severe cardiac dysfunction (left ventricular ejection fraction [LVEF] 12.77%±6.07% vs. 27.44%±4.47%, P<0.01; left ventricular end-diastolic volume [LVEDV] 147.18±25.82 vs. 101.31±33.20, P<0.05; left ventricular end-systolic volume [LVESV] 129.11±30.17 vs. 74.29±28.54, P<0.05). Moreover, inhibiting miR-330-5p significantly increased the levels of NLRP3 inflammasome related proteins including caspase-1 (0.80±0.083 vs. 0.60±0.062, P<0.05), interleukin (IL)-1β (0.87±0.053 vs. 0.79±0.083, P<0.05), IL-18 (0.52±0.063 vs. 0.49±0.098, P<0.05) and tissue necrosis factor (TNF)-α (1.47±0.17 vs. 1.03±0.11, P<0.05). Furthermore, TIM3 was confirmed as a potential target of miR-330-5p. As predicted, suppression of TIM3 by small interfering RNA (siRNA) ameliorated the anti-miR-330-5p-mediated apoptosis of cardiomyocytes and activation of NLRP3 inflammasome signaling pathway (Figure 1). Conclusion Overall, our study indicated that miR-330-5p/TIM3 axis involved in the regulating mechanism of NLRP3 inflammasome-mediated myocardial ischemia-reperfusion injury. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China Grants


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenyu Fan ◽  
Liangliang Cai ◽  
Shengnan Wang ◽  
Jing Wang ◽  
Bohua Chen

Baicalin is a natural flavonoid glycoside that confers protection against myocardial ischemia/reperfusion (I/R) injury. However, its mechanism has not been fully understood. This study focused on elucidating the role of ferroptosis in baicalin-generated protective effects on myocardial ischemia/reperfusion (I/R) injury by using the myocardial I/R rat model and oxygen–glucose deprivation/reoxygenation (OGD/R) H9c2 cells. Our results show that baicalin improved myocardial I/R challenge–induced ST segment elevation, coronary flow (CF), left ventricular systolic pressure , infarct area, and pathological changes and prevented OGD/R-triggered cell viability loss. In addition, enhanced lipid peroxidation and significant iron accumulation along with activated transferrin receptor protein 1 (TfR1) signal and nuclear receptor coactivator 4 (NCOA4)-medicated ferritinophagy were observed in in vivo and in vitro models, which were reversed by baicalin treatment. Furthermore, acyl-CoA synthetase long-chain family member 4 (ACSL4) overexpression compromised baicalin-generated protective effect in H9c2 cells. Taken together, our findings suggest that baicalin prevents against myocardial ischemia/reperfusion injury via suppressing ACSL4-controlled ferroptosis. This study provides a novel target for the prevention of myocardial ischemia/reperfusion injury.


2000 ◽  
Vol 279 (1) ◽  
pp. H329-H338 ◽  
Author(s):  
Feng Gao ◽  
Theodore A. Christopher ◽  
Bernard L. Lopez ◽  
Eitan Friedman ◽  
Guoping Cai ◽  
...  

The purpose of this study was to determine whether the protective effects of adenosine on myocardial ischemia-reperfusion injury are altered with age, and if so, to clarify the mechanisms that underlie this change related to nitric oxide (NO) derived from the vascular endothelium. Isolated perfused rat hearts were exposed to 30 min of ischemia and 60 min of reperfusion. In the adult hearts, administration of adenosine (5 μmol/l) stimulated NO release (1.06 ± 0.19 nmol · min−1 · g−1, P < 0.01 vs. vehicle), increased coronary flow, improved cardiac functional recovery (left ventricular developed pressure 79 ± 3.8 vs. 57 ± 3.1 mmHg in vehicle, P < 0.001; maximal rate of left ventricular pressure development 2,385 ± 103 vs. 1,780 ± 96 in vehicle, P < 0.001), and reduced myocardial creatine kinase loss (95 ± 3.9 vs. 159 ± 4.6 U/100 mg protein, P < 0.01). In aged hearts, adenosine-stimulated NO release was markedly reduced (+0.42 ± 0.12 nmol · min−1 · g−1 vs. vehicle), and the cardioprotective effects of adenosine were also attenuated. Inhibition of NO production in the adult hearts significantly decreased the cardioprotective effects of adenosine, whereas supplementation of NO in the aged hearts significantly enhanced the cardioprotective effects of adenosine. The results show that the protective effects of adenosine on myocardial ischemia-reperfusion injury are markedly diminished in aged animals, and that the loss in NO release in response to adenosine may be at least partially responsible for this age-related alteration.


2008 ◽  
Vol 295 (5) ◽  
pp. H2128-H2134 ◽  
Author(s):  
Atsuko Motoki ◽  
Matthias J. Merkel ◽  
William H. Packwood ◽  
Zhiping Cao ◽  
Lijuan Liu ◽  
...  

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document