Intracellular calcium activates a chloride current in canine ventricular myocytes

1994 ◽  
Vol 267 (5) ◽  
pp. H1984-H1995 ◽  
Author(s):  
A. C. Zygmunt

The contribution of chloride and potassium to the 4-aminopyridine (4-AP)-resistant transient outward current was investigated in dog cardiac myocytes. Whole cell currents were recorded at 37 degrees C in single cells dissociated from epicardial and midmyocardial regions of the canine ventricle. Sodium-calcium exchange current and voltage-dependent transient outward potassium current (IA) were blocked in sodium-free solutions containing 2 mM 4-AP; sodium channels were inactivated by the -50-mV holding potential. When patch pipettes contained 0.4–0.8 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, voltage-clamp steps over the range -20 to +50 mV activated an inward calcium current (ICa) and a Ca(2+)-activated chloride current [ICl(Ca)]. ICl(Ca) was blocked by 200 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), or reduction of external chloride. Independent of the presence of potassium, the reversal potential of the SITS-sensitive current varied with extracellular chloride, as predicted for a chloride-selective conductance. The bell-shaped current-voltage relation of ICl(Ca) has a threshold of -20 mV and a peak at +40 mV. No evidence could be found for a Ca(2+)-activated potassium current or a Ca(2+)-activated nonspecific cation current under these conditions. ICl(Ca) contributed to oscillatory inward currents at diastolic potentials in cells superfused by isoproterenol and high Ca2+, suggesting a role for this current in triggered arrhythmias associated with delayed afterdepolarizations. In the normal heart, ICl(Ca) is likely to contribute to rate- and rhythm-dependent repolarization of the cardiac action potential.

1989 ◽  
Vol 257 (6) ◽  
pp. C1177-C1181 ◽  
Author(s):  
R. D. Harvey ◽  
J. R. Hume

The effects of beta-adrenergic stimulation on the Ca2(+)-insensitive transient outward current (Ito) in rabbit ventricular myocytes were examined. Exposure to isoproterenol (ISO; 1 microM) activated a time-dependent current at positive membrane potentials. To determine whether this ISO-induced current was associated with Ito, sensitivity to the K+ channel antagonist, 3,4-diaminopyridine (DAP; 200 microM) was compared before and after exposure to ISO. The DAP-sensitive current was not enhanced by ISO, suggesting that the ISO-induced current was not a component of Ito. Ito and the ISO-induced current could also be dissociated by changing the membrane holding potential. Positive holding potentials, which produced significant inactivation of Ito, had little effect on the ISO-induced membrane current. Furthermore, the ISO-induced current could be observed when K+ was replaced by Cs+. The reversal potential of the ISO-induced current agreed with the predicted Cl- equilibrium potential, and exposure to Cl(-)-free extracellular solutions eliminated the response to ISO. Therefore, we conclude that ISO does not directly activate Ito in rabbit ventricular myocytes, but instead, activates a time-independent chloride current (ICl) similar to that recently described in guinea pig ventricular myocytes and shown to be regulated by adenylate cyclase (R. D. Harvey and J. R. Hume. Science Wash. DC 244: 983-985, 1989).


1995 ◽  
Vol 268 (5) ◽  
pp. H1992-H2002 ◽  
Author(s):  
Z. Wang ◽  
B. Fermini ◽  
J. Feng ◽  
S. Nattel

Rabbit atrial cells manifest a prominent transient outward K+ current (Ito1), but this current recovers slowly from inactivation and is unlikely to be important at physiological rates (3-5 Hz). Depolarization of rabbit atrial cells also elicits a transient Ca(2+)-dependent outward Cl- current (Ito2). To compare the relative magnitude of these transient outward currents at various rates, we applied whole cell voltage-clamp techniques to isolated rabbit atrial myocytes. Whereas peak Ito1 exceeded Ito2 at slow rates (0.1 Hz), Ito1 was strongly reduced as rate was increased (by 97 +/- 2%, mean +/- SE, at 4 Hz), while Ito2 was slightly reduced (by 28 +/- 4%, 4 Hz). The reversal potential of transient outward tail currents at 0.07 Hz was -49 +/- 9 mV, while at 2.5 Hz the reversal potential became -18 +/- 7 mV (calculated Cl- reversal potential -18 mV). The addition of the Cl- transport blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 150 microM) or the replacement of external Cl- with methanesulfonate inhibited a large part of the transient outward current elicited by depolarization at 4 Hz. DIDS and Cl- replacement increased action potential duration in both single rabbit atrial cells and multicellular rabbit atrial preparations. We conclude that the Ca(2+)-dependent Cl- current is substantially larger than the transient K+ current at physiological rates in the rabbit and is likely to play a more important role in action potential repolarization than the latter current in this tissue in vivo.


1999 ◽  
Vol 277 (4) ◽  
pp. H1467-H1477 ◽  
Author(s):  
Hui Sun ◽  
Denis Chartier ◽  
Stanley Nattel ◽  
Normand Leblanc

The Ca2+-activated Cl− current [ I Cl(Ca)] contributes to the repolarization of the cardiac action potential under physiological conditions. I Cl(Ca) is known to be primarily activated by Ca2+release from the sarcoplasmic reticulum (SR). L-type Ca2+ current [ I Ca(L)] represents the major trigger for Ca2+ release in the heart. Recent evidence, however, suggests that Ca2+ entry via reverse-mode Na+/Ca2+exchange promoted by voltage and/or Na+ current ( I Na) may also play a role. The purpose of this study was to test the hypothesis that I Cl(Ca) can be induced by I Na in the absence of I Ca(L). Macroscopic currents and Ca2+transients were measured using the whole cell patch-clamp technique in rabbit ventricular myocytes loaded with Indo-1. Nicardipine (10 μM) abolished I Ca(L)at a holding potential of −75 mV as tested in Na+-free external solution. In the presence of 131 mM external Na+and in the absence of I Ca(L), a 4-aminopyridine-resistant transient outward current was recorded in 64 of 81 cells accompanying a phasic Ca2+ transient. The current reversed at −42.0 ± 1.3 mV ( n = 6) and at +0.3 ± 1.4 mV ( n = 6) with 21 and 141 mM of internal Cl−, respectively, similar to the predicted reversal potential with low intracellular Cl− concentration ([Cl−]i) (−47.8 mV) and high [Cl−]i(−1.2 mV). Niflumic acid (100 μM) inhibited the current without affecting the Ca2+ signal ( n = 8). Both the current and Ca2+ transient were abolished by 10 mM caffeine ( n = 6), 10 μM ryanodine ( n = 3), 30 μM tetrodotoxin ( n = 9), or removal of extracellular Ca2+( n = 6). These properties are consistent with those of I Cl(Ca)previously described in mammalian cardiac myocytes. We conclude that 1) I Cl(Ca) can be recorded in the absence of I Ca(L), and 2) I Na-induced SR Ca2+ release mechanism is also present in the rabbit heart and may play a physiological role in activating the Ca2+-sensitive membrane Cl− conductance.


1992 ◽  
Vol 263 (6) ◽  
pp. H1967-H1971 ◽  
Author(s):  
D. Y. Duan ◽  
B. Fermini ◽  
S. Nattel

In rabbit atrial myocytes, depolarization of the membrane results in a rapidly activating transient outward current (I(to)) that then decays to a sustained level. The sustained current (Isus) remains constant for at least 5 s during continued depolarization. The present study was designed to identify the ionic mechanism underlying Isus with the use of whole cell voltage-clamp techniques. After exposure to 2 mM 4-aminopyridine (4-AP), the 4-AP-sensitive transient outward current (I(to1)) was abolished, but Isus was unaffected. Isus was not blocked by the K+ channel blockers tetraethylammonium chloride and Ba2+, was not changed by increasing superfusate K+ concentration, and was still present when K+ was replaced by Cs+ in both the superfusate and the pipette. Isus was significantly reduced by the Cl- transport blockers 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The current-voltage relations of Isus showed outward rectification, and the reversal potential of Isus shifted with changes in the transmembrane Cl- gradient in the fashion expected for a Cl- current. We conclude that Isus in rabbit atrium is due to a noninactivating Cl- current which, unlike previously described cardiac Cl- currents, is manifest in the absence of exogenous stimulators of adenosine 3',5'-cyclic monophosphate formation, cytosolic Ca2+ transients, or cell swelling.


1998 ◽  
Vol 274 (3) ◽  
pp. C577-C585 ◽  
Author(s):  
Gui-Rong Li ◽  
Haiying Sun ◽  
Stanley Nattel

The threshold potential for the classical depolarization-activated transient outward K+ current and Cl− current is positive to −30 mV. With the whole cell patch technique, a transient outward current was elicited in the presence of 5 mM 4-aminopyridine (4-AP) and 5 μM ryanodine at voltages positive to the K+ equilibrium potential in canine ventricular myocytes. The current was abolished by 200 μM Ba2+ or omission of external K+([Formula: see text]) and showed biexponential inactivation. The current-voltage relation for the peak of the transient outward component showed moderate inward rectification. The transient outward current demonstrated voltage-dependent inactivation (half-inactivation voltage: −43.5 ± 3.2 mV) and rapid, monoexponential recovery from inactivation (time constant: 13.2 ± 2.5 ms). The reversal potential responded to the changes in[Formula: see text] concentration. Action potential clamp revealed two phases of Ba2+-sensitive current during the action potential, including a large early transient component after the upstroke and a later outward component during phase 3 repolarization. The present study demonstrates that depolarization may elicit a Ba2+- and[Formula: see text]-sensitive, 4-AP-insensitive, transient outward current with inward rectification in canine ventricular myocytes. The properties of this K+ current suggest that it may carry a significant early outward current upon depolarization that may play a role in determining membrane excitability and action potential morphology.


2002 ◽  
Vol 283 (1) ◽  
pp. H302-H314 ◽  
Author(s):  
Yanfang Xu ◽  
Pei Hong Dong ◽  
Zhao Zhang ◽  
Gias Uddin Ahmmed ◽  
Nipavan Chiamvimonvat

The properties of several components of outward K+ currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca2+-activated ionic currents. We studied the Ca2+-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca2+ dependent. The current is carried by Cl−and is critically dependent on Ca2+ influx via voltage-gated Ca2+ channels and the sarcoplasmic reticulum Ca2+ store. The current can be blocked by the anion transport blockers niflumic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid. Single channel recordings reveal small conductance channels (∼1 pS in 140 mM Cl−) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.


1992 ◽  
Vol 99 (3) ◽  
pp. 391-414 ◽  
Author(s):  
A C Zygmunt ◽  
W R Gibbons

We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.


1994 ◽  
Vol 266 (1) ◽  
pp. H182-H190 ◽  
Author(s):  
A. Ogbaghebriel ◽  
A. Shrier

Outward currents were measured in single rabbit atrial myocytes using the whole cell configuration of the patch-clamp technique in the presence of tetrodotoxin (5–10 microM) and MnCl2 (2 mM) to block inward currents. Depolarizing voltage-clamp steps from a holding potential of -80 mV elicited a predominant 4-aminopyridine (4-AP)-sensitive transient outward current (Ito). Inhibitors of oxidative metabolism, 2,4-dinitrophenol (DNP; 100 microM) and cyanide (3 mM) abolished Ito and caused a large increase in the steady-state outward current. This steady-state outward current was inhibited by glibenclamide (5 microM), a blocker of the ATP-regulated potassium current (IKATP). In the presence of DNP, glibenclamide (5 microM) not only inhibited IKATP but also partially restored Ito. Absence of ATP from the pipette produced effects on outward currents similar to those induced by DNP or cyanide. We conclude that metabolic inhibition abolishes Ito in rabbit atrial myocytes and suggest that ATP may be required for the activation of the channel.


2000 ◽  
Vol 84 (4) ◽  
pp. 1814-1825 ◽  
Author(s):  
Jason A. Luther ◽  
Katalin Cs. Halmos ◽  
Jeffrey G. Tasker

Type I putative magnocellular neurosecretory cells of the hypothalamic paraventricular nucleus (PVN) express a prominent transient outward rectification generated by an A-type potassium current. Described here is a slow transient outward current that alters cell excitability and firing frequency in a subset of type I PVN neurons (38%). Unlike most of the type I neurons (62%), the transient outward current in these cells was composed of two kinetically separable current components, a fast activating, fast inactivating component, resembling an A-type potassium current, and a slowly activating [10–90% rise time: 20.4 ± 12.8 (SE) ms], slowly inactivating component (time constant of inactivation: τ = 239.0 ± 66.1 ms). The voltage dependence of activation and inactivation and the sensitivity to block by 4-aminopyridine (5 mM) and tetraethylammonium chloride (10 mM) of the fast and slow components were similar. Compared to the other type I neurons, the neurons that expressed the slow transient outward current were less excitable when hyperpolarized, requiring larger current injections to elicit an action potential (58.5 ± 13.2 vs. 15.4 ± 2.4 pA; 250-ms duration; P < 0.01), displaying a longer delay to the first spike (184.9 ± 15.7 vs. 89.7 ± 8.8 ms with 250- to 1,000-ms, 50-pA current pulses; P < 0.01), and firing at a lower frequency (18.7 ± 4.6 vs. 37.0 ± 5.5 Hz with 100-pA current injections; P < 0.05). These data suggest that a distinct subset of type I PVN neurons express a novel slow transient outward current that leads to a lower excitability. Based on double labeling following retrograde transport of systemically administered fluoro-gold and intracellular injection of biocytin, these cells are neurosecretory and are similar morphologically to magnocellular neurosecretory cells, although it remains to be determined whether they are magnocellular neurons.


Sign in / Sign up

Export Citation Format

Share Document