Effect of milrinone on left ventricular relaxation and Ca2+ uptake function of cardiac sarcoplasmic reticulum

2000 ◽  
Vol 279 (4) ◽  
pp. H1898-H1905 ◽  
Author(s):  
Masafumi Yano ◽  
Michihiro Kohno ◽  
Tomoko Ohkusa ◽  
Mamoru Mochizuki ◽  
Jutaro Yamada ◽  
...  

Milrinone, a phosphodiesterase 3 (PDE3) inhibitor, is known to enhance left ventricular (LV) contractility by an inhibition of the breakdown of cAMP through the mechanism inhibiting PDE3. However, it is unclear whether milrinone also exerts positive lusitropy, like dobutamine. Here, we assessed the effects of milrinone on in vivo LV relaxation, as well as the Ca2+-ATPase activity and the Ca2+uptake function of the cardiac sarcoplasmic reticulum (SR), compared with the effect of dobutamine on those functions. After dobutamine (3 μg · kg−1 · min−1) was administered, the peak value of the first derivative of LV pressure (+dP/d t) increased by 46%, whereas the time constant (τ) of LV pressure decay decreased by 6.9%, respectively. After milrinone (10 μg/kg) was administered, the peak +dP/d tincreased to a similar extent as dobutamine (46%), whereas τ decreased much more than dobutamine (19.9%; P < 0.05). In LV crude homogenate, the thapsigargin-sensitive, Ca2+-ATPase activity-cAMP relationships was significantly less increased by milrinone compared with dobutamine ( P< 0.05), indicating the higher sensitivity of the SR Ca2+-ATPase activity on cAMP by milrinone than by dobutamine. In the SR vesicles purified from LV muscles, the addition of cAMP increased the SR Ca2+ uptake in a dose-dependent fashion, and the PDE3 inhibitors (milrinone and cGMP) significantly augmented this response ( P < 0.05). Hence, milrinone substantially improved LV relaxation in association with an acceleration of the SR Ca2+-ATPase activity and the SR Ca2+ uptake. This acceleration might be due to an inhibition of the membrane-bound PDE3 in the SR, leading to a local elevation of cAMP.

1991 ◽  
Vol 69 (11) ◽  
pp. 1677-1685 ◽  
Author(s):  
D. W. Eley ◽  
J. M. Eley ◽  
B. Korecky ◽  
H. Fliss

Isolated rat hearts perfused with 100 μM hypochlorous acid (HOCl), a powerful oxidant produced by activated neutrophils, exhibited progressive impairment of contractile performance suggestive of a cytosolic Ca2+ overload (increased left ventricular end-diastolic pressure, increased aortic root perfusion pressure, and depressed pulse pressure). Sarcoplasmic reticulum (SR) enriched microsomal preparations isolated from HOCl-perfused hearts showed a significant decline, when compared with control hearts, in both Ca2+ ATPase activity (123 ± 40 vs. 473 ± 46 nmol Pi∙mg−1 protein∙min−1) and Ca2+ uptake (12 ± 5 vs. 46 ± 4 nmol Ca2+∙mg−1 protein∙min−1). The sulfhydryl content in Ca2+ ATPase and other proteins, as determined by [14C]iodoacetamide binding, was also progressively depleted in HOCl-perfused hearts. Perfusion of the HOCl-treated hearts with dithiothreitol (DTT), a disulfide reducing agent, resulted in a time-dependent attenuation, and eventual partial reversal, of the dysfunction in both contractility and SR Ca2+ ATPase activity. Protein thiol levels were concomitantly restored to near control values. The data indicate that HOCl-induced contractile dysfunction in heart is related to the inactivation of the SR Ca2+ ATPase as a result of thiol oxidation and suggest that DTT is capable of reversing this dysfunction in situ by reducing the oxidized sulfhydryls in the Ca2+ ATPase.Key words: hypochlorous acid, dithiothreitol, cardiac sarcoplasmic reticulum, Ca2+ ATPase, protein sulfhydryl.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


1997 ◽  
Vol 152 (3) ◽  
pp. 355-363 ◽  
Author(s):  
L Ferasin ◽  
G Gabai ◽  
J Beattie ◽  
G Bono ◽  
A T Holder

The ability of site-specific antipeptide antisera to enhance the biological activity of ovine FSH (oFSH) in vivo was investigated using hypopituitary Snell dwarf mice. These animals were shown to respond to increasing doses of oFSH (3·3–90 μg/day), administered in two daily injections over a 5-day treatment period, in a highly significant dose-dependent fashion. The responses measured were increases in uterine weight, ovarian weight and the index of keratinisation in vaginal smears. The dose-dependent response to oFSH confirmed the suitability of this animal model for these investigations and suggested the suboptimal dose of oFSH (20 μg/day) for use in enhancement studies. Five peptides derived from the β subunit of bovine FSH (bFSH) (A, residues 33–47; B, 40–51; C, 69–80; D, 83–94; E, 27–39) were used to generate polyclonal antipeptide antisera. Of these peptides, only A and B produced an antiserum (raised in sheep) capable of recognising 125I-bFSH in a liquid phase RIA. Antisera prepared against peptide A or peptide B were found to significantly enhance the biological activity of 20 μg oFSH/day over a 5-day treatment period. The response to antipeptide antisera alone did not differ significantly from that observed in PBS-injected control animals, neither did the response to FSH alone differ from that observed in animals treated with FSH plus preimmune serum. Thus the enhanced responses are dependent upon the presence of FSH plus antipeptide antiserum. Peptides A and B are located in a region thought to be involved in receptor recognition, this may have implications for the mechanism underlying this phenomenon and/or the structure/function relationships of FSH. That FSH-enhancing antisera can be generated by immunisation of animals with peptides A and B suggests that it may be possible to develop these peptides as vaccines capable of increasing reproductive performance, such as ovulation rate. The high degree of sequence homology between ovine, bovine and porcine (and to a lesser extent human and equine) FSH in the region covered by peptides A and B suggests that these peptides could also be used to promote and regulate ovarian function in all of these species. Journal of Endocrinology (1997) 152, 355–363


1994 ◽  
Vol 266 (1) ◽  
pp. H68-H78 ◽  
Author(s):  
C. R. Cory ◽  
R. W. Grange ◽  
M. E. Houston

The loss of load-sensitive relaxation observed in the pressure-overloaded heart may reflect a strategy of slowed cytosolic Ca2+ uptake to yield a prolongation of the active state of the muscle and a decrease in cellular energy expenditure. A decrease in the potential of the sarcoplasmic reticulum (SR) to resequester cytosolic Ca2+ during diastole could contribute to this attenuated load sensitivity. To test this hypothesis, both in vitro mechanical function of anterior papillary muscles and the SR Ca2+ sequestration potential of female guinea pig left ventricle were compared in cardiac hypertrophy (Hyp) and sham-operated (Sham) groups. Twenty-one days of pressure overload induced by coarctation of the suprarenal, subdiaphragmatic aorta resulted in a 36% increase in left ventricular mass in the Hyp. Peak isometric tension, the rate of isometric tension development, and the maximal rates of isometric and isotonic relaxation were significantly reduced in Hyp. Load-sensitive relaxation were significantly reduced in Hyp. Load-sensitive relaxation quantified by the ratio of a rapid loading to unloading force step in isotonically contracting papillary muscle was reduced 50% in Hyp muscles. Maximum activity of SR Ca(2+)-adenosinetriphosphatase (ATPase) measured under optimal conditions (37 degrees C; saturating Ca2+) was unaltered, but at low free Ca2+ concentrations (0.65 microM), it was decreased by 43% of the Sham response. Bivariate regression analysis revealed a significant (r = 0.84; P = 0.009) relationship between the decrease in SR Ca(2+)-ATPase activity and the loss of load-sensitive relaxation after aortic coarctation. Stimulation of the SR Ca(2+)-ATPase by the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase resulted in a 2.6-fold increase for Sham but only a 1.6-fold increase for Hyp. Semiquantitative Western blot radioimmunoassays revealed that the changes in SR Ca(2+)-ATPase activity were not due to decreases in the content of the Ca(2+)-ATPase protein or phospholamban. Our data directly implicate a role for decreased SR function in attenuated load sensitivity. A purposeful downregulation of SR Ca2+ uptake likely results from a qualitative rather than a quantitative change in the ATPase and possibly one of its key regulators, phospholamban.


1994 ◽  
Vol 267 (2) ◽  
pp. C357-C366 ◽  
Author(s):  
P. Korge ◽  
K. B. Campbell

Ca2+ pump function of skeletal muscle sarcoplasmic reticulum (SR) vesicles was measured by monitoring Ca2+ uptake and efflux with a Ca(2+)-sensitive minielectrode and adenosinetriphosphatase (ATPase) activity of the same preparation under the same conditions. The efficiency of Ca2+ transport into SR vesicles, defined by the amount of Ca2+ transported per ATP hydrolyzed (coupling ratio), varied significantly depending on assay conditions. Coupling ratio increased in parallel with increase in precipitating anion concentration, which is supposed to decrease accumulation of free Ca2+ inside vesicles and its subsequent efflux. Membrane-bound creatine kinase-creatine phosphate (CK-CP) system, acting as a ADP sensor and local ATP regenerator, significantly improved Ca2+ pump function when the pump worked with low efficiency (coupling ratio < 1). The effect of CK-CP system on Ca2+ pump function was also dependent on extravesicular Ca2+ concentration ([Ca2+]o), the effect being most significant at high initial [Ca2+]o. Under conditions in which SR vesicles were allowed to decrease [Ca2+]o, as occurs also during muscle relaxation, plateau values of Ca(2+)-ATPase activity were reached at significantly higher [Ca2+]o (54 +/- 5.7, n = 6), compared with leaky vesicles or the condition in which [Ca2+]o was maintained. By preventing local accumulation of ADP, generated in ATPase reactions, CK-CP system also inhibited Ca2+ efflux under conditions in which this efflux was stimulated by the increase of free Ca2+ inside vesicles. This effect was at least partially responsible for the CK-CP-supported increase in Ca2+ uptake and coupling ratios that were more expressed at low precipitating anion concentration. We hypothesize that local ATP regeneration by CK-CP system is one mechanism the cell can use to improve Ca2+ uptake by SR in emergency conditions, where excessive increase in cytoplasmic [Ca2+] may have deleterious effects.


2009 ◽  
Vol 7 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Monica Jones Costa ◽  
Francisco Tadeu Rantin ◽  
Ana Lúcia Kalinin

This study analyzed the physiological role of the cardiac sarcoplasmic reticulum (SR) of two neotropical teleosts, the jeju, Hoplerythrinus unitaeniatus (Erythrinidae), and the acara, Geophagus brasiliensis (Cichlidae). While the in vivo heart frequency (fH - bpm) of acara (79.6 ± 6.6) was higher than that of the jeju (50.3 ± 2.7), the opposite was observed for the ventricular inotropism (Fc - mN/mm²) at 12 bpm (acara = 28.66 ± 1.86 vs. jeju = 36.09 ± 1.67). A 5 min diastolic pause resulted in a strong potentiation of Fc (≅ 90%) of strips from jeju, which was completely abolished by ryanodine. Ryanodine also resulted in a ≅ 20% decrease in the Fc developed by strips from jeju at both subphysiological (12 bpm) and physiological (in vivo) frequencies. However, this effect of ryanodine reducing the Fc from jeju was completely compensated by adrenaline increments (10-9 and 10-6 M). In contrast, strips from acara were irresponsive to ryanodine, irrespective of the stimulation frequency, and increases in adrenaline concentration (to 10-9 and 10-6 M) further increased Fc. These results reinforce the hypothesis of the functionality of the SR as a common trait in neotropical ostariophysian (as jeju), while in acanthopterygians (as acara) it seems to be functional mainly in 'athletic' species.


2009 ◽  
Vol 87 (9) ◽  
pp. 653-665 ◽  
Author(s):  
Priscilla M.C. Dos Santos ◽  
Fabio P. Freitas ◽  
Jeane Mendes ◽  
Ana Lucia Tararthuch ◽  
Ricardo Fernandez

The objective of the present work was to characterize the biochemical activity of the proton pumps present in the C11 clone of Madin–Darby canine kidney (MDCK) cells, akin to intercalated cells of the collecting duct, as well as to study their regulation by hormones like aldosterone and vasopressin. MDCK-C11 cells from passages 78 to 86 were utilized. The reaction to determine H+-ATPase activity was started by addition of cell homogenates to tubes contained the assay medium. The inorganic phosphate (Pi) released was determined by a colorimetric method modified from that described by Fiske and Subbarow. Changes in intracellular calcium concentration in the cells was determined using the Ca2+-sensing dye fluo-4 AM. Homogenates of MDCK-C11 cells present a bafilomycin-sensitive activity (vacuolar H+-ATPase), and a vanadate-sensitive activity (H+/K+-ATPase). The bafilomycin-sensitive activity showed a pH optimum of 6.12. ATPase activity was also stimulated in a dose-dependent fashion as K+ concentration was increased between 0 and 50 mmol·L–1, with an apparent Km for the release of Pi of 0.13 mmol·L–1 and Vmax of 22.01 nmol·mg–1·min–1. Incubation of cell monolayers with 10−8 mol·L–1 aldosterone for 24 h significantly increased vacuolar H+-ATPase activity, an effect prevented by 10−5 mol·L–1 spironolactone. Vacuolar H+-ATPase activity was also stimulated by 10−11 mol·L–1 vasopressin, an effect prevented by a V1 receptor-specific antagonist. This dose of vasopressin determined a sustained rise of cytosolic ionized calcium. We conclude that (i) homogenates of MDCK-C11 cells present a bafilomycin-sensitive (H+-ATPase) activity and a vanadate-sensitive (H+/K+-ATPase) activity, and (ii) vacuolar H+-ATPase activity is activated by aldosterone through a genomic pathway and by vasopressin through V1 receptors.


1999 ◽  
Vol 277 (1) ◽  
pp. H74-H79 ◽  
Author(s):  
Hisaharu Kohzuki ◽  
Hiromi Misawa ◽  
Susumu Sakata ◽  
Yoshimi Ohga ◽  
Hiroyuki Suga ◽  
...  

To clarify the energy-expenditure mechanism during Ba2+ contracture of mechanically unloaded rat left ventricular (LV) slices, we measured myocardial O2 consumption (V˙o 2) of quiescent slices in Ca2+-free Tyrode solution andV˙o 2 during Ba2+ contracture by substituting Ca2+ with Ba2+. We then investigated the effects of cyclopiazonic acid (CPA) and 2,3-butanedione monoxime (BDM) on the Ba2+ contractureV˙o 2. The Ca2+-freeV˙o 2 corresponds to that of basal metabolism (2.32 ± 0.53 ml O2 ⋅ min−1 ⋅ 100 g LV−1). Ba2+ increased theV˙o 2 in a dose-dependent manner (from 0.3 to 3.0 mmol/l) from 110 to 150% of basal metabolic V˙o 2. Blockade of the sarcoplasmic reticulum (SR) Ca2+ pump by CPA (10 μmol/l) did not at all decrease the Ba2+-activatedV˙o 2. BDM (5 mmol/l), which specifically inhibits cross-bridge cycling, reduced the Ba2+activatedV˙o 2 almost to basal metabolic V˙o 2. These energetic results revealed that the Ba2+-activatedV˙o 2 was used for the cross-bridge cycling but not for the Ca2+ handling by the SR Ca2+ pump.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1241-1244 ◽  
Author(s):  
T Ishibashi ◽  
H Kimura ◽  
Y Shikama ◽  
T Uchida ◽  
S Kariyone ◽  
...  

Abstract To determine the biologic activity of interleukin-6 (IL-6) on megakaryocytopoiesis and thrombocytopoiesis in vivo, the cytokine was administered intraperitoneally to mice every 12 hours at varying doses for five days or for varying time intervals, based on the kinetic analysis of IL-6 serum levels indicating the peak of 40 minutes following injection, with no detection at 150 minutes. A dose-response experiment showed that IL-6 increased platelet counts in a dose- dependent fashion at a plateau stimulation level of 5 micrograms. Administration of 5 micrograms of IL-6 reproducibly elevated platelet counts at five days by approximately 50% to 60% of increase. Moreover, a striking increase in megakaryocytic size in response to IL-6 was elicited by the treatment, but no change in megakaryocyte numbers; whereas IL-6 administration did not expand CFU-MK numbers. The in vivo studies in this manner had negligible effects on other hematologic parameters, with the minor exception of monocyte levels. These data show that IL-6 acts on maturational stages in megakaryocytopoiesis and promotes platelet production in vivo in mice, suggesting that IL-6 functions as thrombopoietin.


2002 ◽  
Vol 96 (3) ◽  
pp. 675-680 ◽  
Author(s):  
Franz Kehl ◽  
John G. Krolikowski ◽  
Boris Mraovic ◽  
Paul S. Pagel ◽  
David C. Warltier ◽  
...  

Background Volatile anesthetics precondition against myocardial infarction, but it is unknown whether this beneficial action is threshold- or dose-dependent. The authors tested the hypothesis that isoflurane decreases myocardial infarct size in a dose-dependent fashion in vivo. Methods Barbiturate-anesthetized dogs (n = 40) were instrumented for measurement of systemic hemodynamics including aortic and left ventricular pressures and rate of increase of left ventricular pressure. Dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion and were randomly assigned to receive either 0.0, 0.25, 0.5, 1.0, or 1.25 minimum alveolar concentration (MAC) isoflurane in separate groups. Isoflurane was administered for 30 min and discontinued 30 min before left anterior descending coronary artery occlusion. Results Infarct size (triphenyltetrazolium staining) was 29 +/- 2% of the area at risk in control experiments (0.0 MAC). Isoflurane produced significant (P &lt; 0.05) reductions of infarct size (17 +/- 3, 13 +/- 1, 14 +/- 2, and 11 +/- 1% of the area at risk during 0.25, 0.5, 1.0, and 1.25 MAC, respectively). Infarct size was inversely related to coronary collateral blood flow (radioactive microspheres) in control experiments and during low (0.25 or 0.5 MAC) but not higher concentrations of isoflurane. Isoflurane shifted the linear regression relation between infarct size and collateral perfusion downward (indicating cardioprotection) in a dose-dependent fashion. Conclusions Concentrations of isoflurane as low as 0.25 MAC are sufficient to precondition myocardium against infarction. High concentrations of isoflurane may have greater efficacy to protect myocardium during conditions of low coronary collateral blood flow.


Sign in / Sign up

Export Citation Format

Share Document