scholarly journals Nitric oxide and fever: immune-to-brain signaling vs. thermogenesis in chicks

2016 ◽  
Vol 310 (10) ◽  
pp. R896-R905 ◽  
Author(s):  
Valter Dantonio ◽  
Marcelo E. Batalhão ◽  
Marcia H. M. R. Fernandes ◽  
Evilin N. Komegae ◽  
Gabriela A. Buqui ◽  
...  

Nitric oxide (NO) plays a role in thermogenesis but does not mediate immune-to-brain febrigenic signaling in rats. There are suggestions of a different situation in birds, but the underlying evidence is not compelling. The present study was designed to clarify this matter in 5-day-old chicks challenged with a low or high dose of bacterial LPS. The lower LPS dose (2 μg/kg im) induced fever at 3–5 h postinjection, whereas 100 μg/kg im decreased core body temperature (Tc) (at 1 h) followed by fever (at 4 or 5 h). Plasma nitrate levels increased 4 h after LPS injection, but they were not correlated with the magnitude of fever. The NO synthase inhibitor ( NG-nitro-l-arginine methyl ester, l-NAME; 50 mg/kg im) attenuated the fever induced by either dose of LPS and enhanced the magnitude of the Tc reduction induced by the high dose in chicks at 31–32°C. These effects were associated with suppression of metabolic rate, at least in the case of the high LPS dose. Conversely, the effects of l-NAME on Tc disappeared in chicks maintained at 35–36°C, suggesting that febrigenic signaling was essentially unaffected. Accordingly, the LPS-induced rise in the brain level of PGE2 was not affected by l-NAME. Moreover, l-NAME augmented LPS-induced huddling, which is indicative of compensatory mechanisms to run fever in the face of attenuated thermogenesis. Therefore, as in rats, systemic inhibition of NO synthesis attenuates LPS-induced fever in chicks by affecting thermoeffector activity and not by interfering with immune-to-brain signaling. This may constitute a conserved effect of NO in endotherms.

2001 ◽  
Vol 280 (4) ◽  
pp. R929-R934 ◽  
Author(s):  
Michael K. Hansen ◽  
Kevin A. O'Connor ◽  
Lisa E. Goehler ◽  
Linda R. Watkins ◽  
Steven F. Maier

It has been suggested that proinflammatory cytokines communicate to the brain via a neural pathway involving activation of vagal afferents by interleukin-1β (IL-1β), in addition to blood-borne routes. In support, subdiaphragmatic vagotomy blocks IL-1β-induced, brain-mediated responses such as fever. However, vagotomy has also been reported to be ineffective. Neural signaling would be expected to be especially important at low doses of cytokine, when local actions could occur, but only very small quantities of cytokine would become systemic. Here, we examined core body temperature after intraperitoneal injections of three doses of recombinat human IL-1β (rh-IL-1β). Subdiaphragmatic vagotomy completely blocked the fever produced by 0.1 μg/kg, only partially blocked the fever produced by 0.5 μg/kg, and had no effect at all on the fever that followed 1.0 μg/kg rh-IL-1β. Blood levels of rh-IL-1β did not become greater than normal basal levels of endogenous rat IL-β until the 0.5-μg/kg dose nor was IL-1β induced in the pituitary until this dose. These results suggest that low doses of intraperitoneal IL-1β induce fever via a vagal route and that dose may account for some of the discrepancies in the literature.


2017 ◽  
Vol 114 (36) ◽  
pp. 9731-9736 ◽  
Author(s):  
Rigo Cintron-Colon ◽  
Manuel Sanchez-Alavez ◽  
William Nguyen ◽  
Simone Mori ◽  
Ruben Gonzalez-Rivera ◽  
...  

When food resources are scarce, endothermic animals can lower core body temperature (Tb). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent Tbregulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.


1993 ◽  
Vol 264 (4) ◽  
pp. G678-G685
Author(s):  
J. G. Jin ◽  
S. Misra ◽  
J. R. Grider ◽  
G. M. Makhlouf

The mechanism of action of endogenous tachykinins [substance P (SP) and neurokinin A and B (NKA and NKB)] and of receptor-specific tachykinin analogues (SP methyl ester (SPME), [beta-Ala8]NKA-(4-10), and senktide) was examined in circular muscle of guinea pig stomach. Cross-desensitization studies confirmed that SPME and SP interacted with NK-1 receptors, [beta-Ala8]NKA-(4-10) and NKA with NK-2 receptors, and senktide and NKB with NK-3 receptors. NK-1 and NK-3-receptor agonists induced relaxation and stimulated vasoactive intestinal peptide (VIP) release and nitric oxide (NO) production: tetrodotoxin abolished VIP release, NO production, and relaxation, converting the response to NK-1-receptor agonists to contraction; the NO synthase inhibitor NG-nitro-L-arginine (L-NNA) abolished NO production, partly inhibited VIP release (56-64%, P < 0.01), and abolished relaxation; the VIP antagonist VIP-(10-28) partly inhibited NO production (73-74%, P < 0.001) and relaxation (56-58%, P < 0.01); and atropine augmented relaxation by 28-35% (P < 0.01). The pattern of inhibition implied that: 1) relaxation was mediated by VIP and NO; 2) VIP release was partly dependent on NO production, since it was strongly inhibited by L-NNA; and 3) NO was largely produced by the action of VIP on muscle cells, since it was strongly inhibited by VIP-(10-28). NK-2-receptor agonists elicited only contraction that was not affected by tetrodotoxin; these agonists also inhibited VIP release, NO production, and relaxation induced by NK-1- and NK-3-receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Arias-Reyes ◽  
Sofien Laouafa ◽  
Natalia Zubieta-DeUrioste ◽  
Vincent Joseph ◽  
Aida Bairam ◽  
...  

Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated “en bloc” carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO’s action.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Sebastiaan Wesseling ◽  
Joost O Fledderus ◽  
Johanna A Dijk ◽  
Chantal Tilburgs ◽  
Marianne C Verhaar ◽  
...  

Chronic nitric oxide (NO) depletion induces hypertension and renal damage. Chronic kidney disease is associated with decreased NO availability and less renal H 2 S production. We hypothesized that combined depletion of NO and H 2 S aggravates hypertension and renal injury. Male 8-wk old Sprague Dawley rats were treated with vehicle, NO synthase inhibitor L-NG-nitroarginine (LNNA; 125 mg/L in drinking water), cystathionine-γ-lyase (CSE) inhibitor propargylglycine (PAG; 37.5 mg/kg BW ip daily) or LNNA + PAG for 1 and 4 weeks (6 rats/group). LNNA after 4w increased systolic blood pressure (SBP; 223±10 vs . 137±3 mmHg in controls; P<0.01), proteinuria (144±35 vs. 17±2 mg/d; P<0.01), uremia (16.6±4.2 vs . 7.0±0.4 mmol/L; P<0.05) and tubulo-interstitial injury (P<0.01). LNNA reduced urinary NO metabolite (NOx) excretion by ∼85% after 1w and 4w. PAG alone had no effect on SBP, renal function or injury, but did reduce urinary NOx excretion. Co-treatment with PAG ameliorated LNNA-induced hypertension (182±10 mmHg; P<0.01) and prevented proteinuria (27±3 mg/d), uremia (8.3±0.4 mmol/L) and tubulo-interstitial injury, but did not further reduce urinary NOx excretion. Renal H 2 S production was almost absent in all PAG groups after 1w and 4w (P<0.01) and was reduced in LNNA-treated rats after 4w (4.6±1.4 vs . 9.2±0.5 μmol/hr/mg; P<0.01). Renal HO-1 gene expression was strongly induced in all PAG-treated groups after 1w and 4w (4 to 19-fold; P<0.01) whereas LNNA only increased HO-1 gene expression at 4w (P<0.01). Immunohistochemistry showed that renal HO-1 protein was primarily interstitial in all PAG-treated groups at 1w and 4w. In contrast, LNNA only showed HO-1 in tubular epithelium in conjunction with protein casts. Depleting NO caused hypertension and renal damage followed by reduced renal H 2 S production and increased renal HO-1 expression. Surprisingly, concomitant inhibition of CSE ameliorated hypertension and prevented renal injury. PAG almost completely blocked renal H 2 S production and caused strong induction of renal HO-1, independently of injury, suggesting that H 2 S suppresses renal HO-1 expression. In conclusion, concomitant upregulation of HO-1 expression by inhibition of H 2 S production, prevents LNNA-induced hypertension and renal injury.


2004 ◽  
Vol 97 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Lichao Chen ◽  
Deborah Duricka ◽  
Scott Nelson ◽  
Sanjib Mukherjee ◽  
Stewart G. Bohnet ◽  
...  

Influenza viral infection induces increases in non-rapid eye movement sleep and decreases in rapid eye movement sleep in normal mice. An array of cytokines is produced during the infection, and some of them, such as IL-1β and TNF-α, are well-defined somnogenic substances. It is suggested that nitric oxide (NO) may mediate the sleep-promoting effects of these cytokines. In this study, we use mice with targeted disruptions of either the neuronal NO synthase (nNOS) or the inducible NO synthase (iNOS) gene, commonly referred to as nNOS or iNOS knockouts (KOs), to investigate sleep changes after influenza viral challenge. We report that the magnitude of viral-induced non-rapid eye movement sleep responses in both nNOS KOs and iNOS KOs was less than that of their respective controls. In addition, the duration of rapid eye movement sleep in nNOS KO mice did not decrease compared with baseline values. All strains of mice had similar viral titers and cytokine gene expression profiles in the lungs. Virus was not isolated from the brains of any strain. However, gene expression in the brain stem differed between nNOS KOs and their controls: mRNA for the interferon-induced gene 2′,5′-oligoadenylate synthase 1a was elevated in nNOS KOs relative to their controls at 15 h, and IL-1β mRNA was elevated in nNOS KOs relative to their controls at 48 h. Our results suggest that NO synthesized by both nNOS and iNOS plays a role in virus-induced sleep changes and that nNOS may modulate cytokine expression in the brain.


1993 ◽  
Vol 264 (2) ◽  
pp. H464-H469 ◽  
Author(s):  
M. J. Breslow ◽  
J. R. Tobin ◽  
D. S. Bredt ◽  
C. D. Ferris ◽  
S. H. Snyder ◽  
...  

To determine whether nitric oxide (NO) is involved in adrenal medullary vasodilation during splanchnic nerve stimulation (NS)-induced catecholamine secretion, blood flow (Q) and secretory responses were measured in pentobarbital-anesthetized dogs before and after administration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). L-NAME (40 mg/kg iv over 5 min, followed by 40 mg.kg-1.h-1) reduced NO synthase activity of medullary and cortical homogenates from 5.2 +/- 0.3 to 0.7 +/- 0.1 pmol.min-1.mg protein-1 and from 1.2 +/- 0.2 pmol.min-1.mg protein-1 to undetectable levels, respectively. L-NAME reduced resting medullary and cortical Q by 42 and 60%, respectively. NS before L-NAME increased medullary Q from 181 +/- 16 to 937 +/- 159 ml.min-1.100 g-1 and epinephrine secretion from 1.9 +/- 0.8 to 781 +/- 331 ng/min. NS after L-NAME had no effect on medullary Q (103 +/- 14 vs. 188 +/- 34 ml.min-1.100 g-1), while epinephrine secretion increased to the same extent as in control animals (1.9 +/- 0.7 vs. 576 +/- 250 ng/min). L-NAME also unmasked NS-induced cortical vasoconstriction; cortical Q decreased from 96 +/- 8 to 50 +/- 5 ml.min-1.100 g-1. Administration of hexamethonium (30 mg/kg iv), a nicotinic receptor antagonist, reduced NS-induced epinephrine secretion by 90%. These data suggest independent neural control of medullary Q and catecholamine secretion, the former by NO and the latter by acetylcholine.


2005 ◽  
Vol 152 (4) ◽  
pp. 551-556 ◽  
Author(s):  
Joaquín Ortega ◽  
José M Vila ◽  
María Dolores Mauricio ◽  
Gloria Segarra ◽  
Pascual Medina ◽  
...  

Objective: We studied the intervention of nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor (EDHF) in mediating responses to acetylcholine in thyroid arteries from euthyroid and methimazole-treated (MT) patients. Design and methods: Branches of the superior thyroid artery were obtained from 19 euthyroid patients and 17 MT patients (euthyroid at the time of surgery) undergoing total thyroidectomy or hemithyroidectomy. Artery rings were suspended in organ baths for isometric recording of tension. Results and conclusions: Acetylcholine caused endothelium-dependent relaxation of greater magnitude in arteries from MT patients (pD2 (−log EC50) values were 7.68±0.19 in euthyroid and 8.17±0.26 in MT patients, P <0.05). The relaxation was unaffected by indomethacin and was partially reduced by the NO-synthase inhibitor NG-monomethyl-l-arginine (l-NMMA). This reduction was higher in arteries from MT patients (50±6%) as compared with euthyroid patients (36±6%) (P <0.05). Inhibition of K+ channels using apamin combined with charybdotoxin or high K+ solution abolished the relaxation resistance to l-NMMA and indomethacin. The maximal contraction response to noradrenaline (as a percentage of the response to 100 mM KCl) was lower in MT than in euthyroid patients (57±10 and 96±8 respectively, P < 0.05). The hyporesponsiveness to noradrenaline in arteries from MT patients was corrected by l-NMMA. The results indicate that: (i) thyroid arteries from MT patients show an increased relaxation response to acethylcholine and a decreased contraction response to noradrenaline due to overproduction of NO; (ii) EDHF plays a prominent role in acetylcholine-induced relaxation through activation of Ca2+-activated K+ channels; (iii) the abnormal endothelium-dependent responses in arteries from MT patients are not corrected by medical treatment.


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


Sign in / Sign up

Export Citation Format

Share Document