Acid-Base Effects of Combined Renal Deletion of NBCe1-A and NBCe1-B

Author(s):  
Hyun-Wook Lee ◽  
Jill W. Verlander ◽  
Gary E Shull ◽  
Autumn N. Harris ◽  
I. David Weiner

The molecular mechanisms regulating ammonia metabolism are fundamental to acid-base homeostasis. Deleting the A splice variant of the Na⁺-bicarbonate cotransporter, electrogenic, isoform 1 (NBCe1-A) partially blocks the effect of acidosis to increase urinary ammonia excretion, and this appears to involve the dysregulated expression of ammoniagenic enzymes in the proximal tubule (PT) in the cortex, but not in the outer medulla (OM). A second NBCe1 splice variant, NBCe1-B, is present throughout the PT, including the OM, where NBCe1-A is not present. The current studies determined the effects of combined renal deletion of NBCe1-A and NBCe1-B on systemic and proximal tubule ammonia metabolism. We generated NBCe1-A/B deletion using Cre-loxP techniques and used Cre-negative mice as controls. Since renal NBCe1-A and NBCe1-B expression is limited to the proximal tubule, Cre-positive mice had proximal tubule NBCe1-A/B deletion (PT-NBCe1-A/B KO). While on basal diet, PT-NBCe1-A/B KO mice had severe metabolic acidosis, yet urinary ammonia excretion was not changed significantly. PT-NBCe1-A/B KO decreased expression of phosphate-dependent glutaminase (PDG) and phospho­enol­pyruvate carboxy­kinase (PEPCK) and increased expression of glutamine synthetase (GS), an ammonia recycling enzyme, in PT in both the cortex and OM. Exogenous acid-loading increased ammonia excretion in control mice, but PT-NBCe1-A/B KO prevented any increase. PT-NBCe1-A/B KO significantly blunted acid loading-induced changes in PDG, PEPCK, and GS expression in the proximal tubule in both the cortex and OM. We conclude that NBCe1-B, at least in the presence of NBCe1-A deletion, contributes to proximal tubule ammonia metabolism in the OM and thereby to systemic acid-base regulation.

2020 ◽  
Vol 318 (2) ◽  
pp. F402-F421 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Autumn N. Harris ◽  
Michael F. Romero ◽  
Paul A. Welling ◽  
Charles S. Wingo ◽  
...  

Hypokalemia increases ammonia excretion and decreases K+ excretion. The present study examined the role of the proximal tubule protein NBCe1-A in these responses. We studied mice with Na+-bicarbonate cotransporter electrogenic, isoform 1, splice variant A (NBCe1-A) deletion [knockout (KO) mice] and their wild-type (WT) littermates were provided either K+ control or K+-free diet. We also used tissue sections to determine the effect of extracellular ammonia on NaCl cotransporter (NCC) phosphorylation. The K+-free diet significantly increased proximal tubule NBCe1-A and ammonia excretion in WT mice, and NBCe1-A deletion blunted the ammonia excretion response. NBCe1-A deletion inhibited the ammoniagenic/ammonia recycling enzyme response in the cortical proximal tubule (PT), where NBCe1-A is present in WT mice. In the outer medulla, where NBCe1-A is not present, the PT ammonia metabolism response was accentuated by NBCe1-A deletion. KO mice developed more severe hypokalemia and had greater urinary K+ excretion during the K+-free diet than did WT mice. This was associated with blunting of the hypokalemia-induced change in NCC phosphorylation. NBCe1-A KO mice have systemic metabolic acidosis, but experimentally induced metabolic acidosis did not alter NCC phosphorylation. Although KO mice have impaired ammonia metabolism, experiments in tissue sections showed that lack of ammonia does impair NCC phosphorylation. Finally, urinary aldosterone was greater in KO mice than in WT mice, but neither expression of epithelial Na+ channel α-, β-, and γ-subunits nor of H+-K+-ATPase α1- or α2-subunits correlated with changes in urinary K+. We conclude that NBCe1-A is critical for the effect of diet-induced hypokalemia to increase cortical proximal tubule ammonia generation and for the expected decrease in urinary K+ excretion.


2018 ◽  
Vol 29 (4) ◽  
pp. 1182-1197 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Gunars Osis ◽  
Autumn N. Harris ◽  
Lijuan Fang ◽  
Michael F. Romero ◽  
...  

Renal ammonia metabolism is the primary mechanism through which the kidneys maintain acid-base homeostasis, but the molecular mechanisms regulating renal ammonia generation are unclear. In these studies, we evaluated the role of the proximal tubule basolateral plasma membrane electrogenic sodium bicarbonate cotransporter 1 variant A (NBCe1-A) in this process. Deletion of the NBCe1-A gene caused severe spontaneous metabolic acidosis in mice. Despite this metabolic acidosis, which normally causes a dramatic increase in ammonia excretion, absolute urinary ammonia concentration was unaltered. Additionally, NBCe1-A deletion almost completely blocked the ability to increase ammonia excretion after exogenous acid loading. Under basal conditions and during acid loading, urine pH was more acidic in mice with NBCe1-A deletion than in wild-type controls, indicating that the abnormal ammonia excretion was not caused by a primary failure of urine acidification. Instead, NBCe1-A deletion altered the expression levels of multiple enzymes involved in proximal tubule ammonia generation, including phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase, under basal conditions and after exogenous acid loading. Deletion of NBCe1-A did not impair expression of key proteins involved in collecting duct ammonia secretion. These studies demonstrate that the integral membrane protein NBCe1-A has a critical role in basal and acidosis-stimulated ammonia metabolism through the regulation of proximal tubule ammonia-metabolizing enzymes.


Author(s):  
Autumn N. Harris ◽  
I. David Weiner

Sexual dimorphic variations are present in many aspects of biology and involve the structure and/or function of nearly every organ system. Acid-base homeostasis is critical for optimal health, and renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Recent studies have shown sex-dependent differences in renal ammonia metabolism with regards to both basal ammonia excretion and the response to an exogenous acid load. These sexual dimorphisms are associated with structural changes in the proximal tubule and the collecting duct and variations in the expression of multiple proteins involved in ammonia metabolism and transport. Studies using orchiectomy (ORCH)-induced testosterone deficiency and physiological testosterone replacement show testosterone underlies much of the sex-dependent differences in the proximal tubule. This parallels the finding that the canonical testosterone target receptor, androgen receptor (AR), is present exclusively in the proximal tubule. Thus, testosterone, possibly acting through AR activation, regulates multiple coponents of renal structure and ammonia metabolism. The lack of detectable AR in the remainder of the nephron and the collecting duct suggests that some dimorphisms in renal structure and ammonia transporter expression are mediated through mechanisms other than direct testosterone-dependent AR activation. A better understanding of the mechanism and biological implications of sex's effect on renal structure and ammonia metabolism is critical for optimizing our ability to care for both men and women with acid-base disturbances.


2019 ◽  
Vol 317 (4) ◽  
pp. F890-F905 ◽  
Author(s):  
Autumn N. Harris ◽  
Hyun-Wook Lee ◽  
Lijuan Fang ◽  
Jill W. Verlander ◽  
I. David Weiner

Renal ammonia excretion is a critical component of acid-base homeostasis, and changes in ammonia excretion are the predominant component of increased net acid excretion in response to metabolic acidosis. We recently reported substantial sex-dependent differences in basal ammonia metabolism that correlate with sex-dependent differences in renal structure and expression of key proteins involved in ammonia metabolism. The purpose of the present study was to investigate the effect of sex on the renal ammonia response to an exogenous acid load. We studied 4-mo-old C57BL/6 mice. Ammonia excretion, which was less in male mice under basal conditions, increased in response to acid loading to a greater extent in male mice, such that maximal ammonia excretion did not differ between the sexes. Fundamental structural sex differences in the nonacid-loaded kidney persisted after acid loading, with less cortical proximal tubule volume density in the female kidney than in the male kidney, whereas collecting duct volume density was greater in the female kidney. To further investigate sex-dependent differences in the response to acid loading, we examined the expression of proteins involved in ammonia metabolism. The change in expression of phosphoenolpyruvate carboxykinase and Rh family B glycoprotein with acid loading was greater in male mice than in female mice, whereas Na+-K+-2Cl– cotransporter and inner stripe of the outer medulla intercalated cell Rh family C glycoprotein expression were significantly greater in female mice than in male mice. There was no significant sex difference in glutamine synthetase, Na+/H+ exchanger isoform 3, or electrogenic Na+-bicarbonate cotransporter 1 variant A protein expression in response to acid loading. We conclude that substantial sex-dependent differences in the renal ammonia response to acid loading enable a similar maximum ammonia excretion response.


2011 ◽  
Vol 301 (4) ◽  
pp. F823-F832 ◽  
Author(s):  
Ki-Hwan Han ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Jesse M. Bishop ◽  
Moshe Levi ◽  
...  

Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K+-free or control diets for 2 wk. Rats receiving the K+-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis.


2019 ◽  
Vol 317 (2) ◽  
pp. F489-F501 ◽  
Author(s):  
Gunars Osis ◽  
Kierstin L. Webster ◽  
Autumn N. Harris ◽  
Hyun-Wook Lee ◽  
Chao Chen ◽  
...  

Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.


2020 ◽  
Vol 318 (4) ◽  
pp. F922-F935 ◽  
Author(s):  
Autumn N. Harris ◽  
Hyun-Wook Lee ◽  
Jill W. Verlander ◽  
I. David Weiner

There are substantial sex differences in renal structure and ammonia metabolism that correlate with differences in expression of proteins involved in ammonia generation and transport. This study determined the role of testis-derived testosterone in these differences. We studied 4-mo-old male C57BL/6 mice 4 and 8 wk after either bilateral orchiectomy (ORCH) or sham-operated control surgery and determined the effect of testosterone replacement to reverse the effects of ORCH. Finally, we determined the cellular expression of androgen receptor (AR), testosterone’s canonical target receptor. ORCH decreased kidney and proximal tubule size, and testosterone replacement reversed this effect. ORCH increased ammonia excretion in a testosterone-dependent fashion; this occurred despite similar food intake, which is the primary component of endogenous acid production. ORCH increased expression of both phospho enolpyruvate, a major ammonia-generating protein, and Na+-K+-2Cl− cotransporter, which mediates thick ascending limb ammonia reabsorption; these changes were reversed with testosterone replacement. Orchiectomy also decreased expression of Na+/H+ exchanger isoform 3, which mediates proximal tubule ammonia secretion, in a testosterone-dependent pattern. Finally, ARs are expressed throughout the proximal tubule in both the male and female kidney. Testosterone, possibly acting through ARs, has dramatic effects on kidney and proximal tubule size and decreases ammonia excretion through its effects on several key proteins involved in ammonia metabolism.


2016 ◽  
Vol 310 (11) ◽  
pp. F1229-F1242 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Gunars Osis ◽  
Mary E. Handlogten ◽  
Wouter H. Lamers ◽  
Farrukh A. Chaudhry ◽  
...  

Glutamine synthetase (GS) catalyzes the recycling of NH4+ with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phospho enolpyruvate carboxykinase, and Na+-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.


2018 ◽  
Vol 315 (3) ◽  
pp. F417-F428 ◽  
Author(s):  
Lijuan Fang ◽  
Hyun-Wook Lee ◽  
Chao Chen ◽  
Autumn N. Harris ◽  
Michael F. Romero ◽  
...  

Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study’s purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.


2007 ◽  
Vol 293 (4) ◽  
pp. F1238-F1247 ◽  
Author(s):  
Hye-Young Kim ◽  
Chris Baylis ◽  
Jill W. Verlander ◽  
Ki-Hwan Han ◽  
Sirirat Reungjui ◽  
...  

Kidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation. After 1 wk, glomerular filtration rate, assessed as creatinine clearance, was decreased, serum bicarbonate was slightly increased, and Na+ and K+ were unchanged. Total urinary ammonia excretion was unchanged, but urinary ammonia adjusted for creatinine clearance, an index of per nephron ammonia metabolism, increased significantly. Although reduced renal mass did not alter total Rhcg protein expression, both light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated hypertrophy of both intercalated cells and principal cells in the cortical and outer medullary collecting duct that was associated with increased apical and basolateral Rhcg polarization. Rhbg expression, analyzed using immunoblot analysis, immunohistochemistry, and measurement of cell-specific expression, was unchanged. We conclude that altered subcellular localization of Rhcg contributes to adaptive changes in single-nephron ammonia metabolism and maintenance of acid-base homeostasis in response to reduced renal mass.


Sign in / Sign up

Export Citation Format

Share Document