Capillary and fiber geometry in rat diaphragm perfusion fixed in situ at different sarcomere lengths

1992 ◽  
Vol 73 (1) ◽  
pp. 151-159 ◽  
Author(s):  
D. C. Poole ◽  
O. Mathieu-Costello

To determine the potential range of diaphragm sarcomere lengths in situ and the effect of changes in sarcomere length on capillary and fiber geometry, rat diaphragms were perfusion fixed in situ with glutaraldehyde at different airway pressures and during electrical stimulation. The lengths of thick (1.517 +/- 0.007 microns) and thin (1.194 +/- 0.048 microns) filaments were not different from those established for rat limb muscle. Morphometric techniques were used to determine fiber cross-sectional area, sarcomere length, capillary orientation, and capillary length and surface area per fiber volume. All measurements were referenced to sarcomere length, which averaged 2.88 +/- 0.08 microns at -20 to -25 cmH2O airway pressure (residual volume) and 2.32 +/- 0.05 microns at +20 to +26 cmH2O airway pressure (total lung capacity). The contribution of capillary tortuosity and branching to total capillary length was dependent on sarcomere length and varied from 5 to 22%, consistent with that shown previously for mammalian limb muscles over this range of sarcomere lengths. Capillary length per fiber volume [Jv(c,f)] was significantly greater at residual volume (3,761 +/- 193 mm-2) than at total lung capacity (3,142 +/- 118 mm-2) and correlated with sarcomere length [l; r = 0.628, Jv(c,f) = 876l + 1,156, P less than 0.01; n = 18]. We conclude that the diaphragm is unusual in that the apparent in situ minimal sarcomere length is greater than 2.0 microns.(ABSTRACT TRUNCATED AT 250 WORDS)

1991 ◽  
Vol 70 (4) ◽  
pp. 1781-1786 ◽  
Author(s):  
Y. Kawakami ◽  
M. Nishimura ◽  
H. Kusaka

Tracheal dimensions at total lung capacity (TLC) and residual volume (RV) were analyzed roentgenographically in 17 pairs of male adolescent twins (mean age 16.3 yr; 12 monozygotic pairs and 5 dizygotic pairs). Genetic factors dominated environmental traits in intra- as well as extrathoracic tracheal width at RV. Extrathoracic tracheal width at TLC was also governed by genetic components. Intrathoracic tracheal depth (anteroposterior diameter), length, and cross-sectional area did not seem to be genetically controlled at TLC and RV. Intrathoracic tracheal cross-sectional area increased by 14.4% and became more elliptical from RV to TLC, owing mainly to an increase in tracheal depth (16.7%). Increments from RV to TLC in tracheal depth but not width correlated with increases in lung width, depth, and height. Intrathoracic trachea was elongated 14% in association with increase in lung height from RV to TLC. At TLC, extrathoracic tracheal width was larger than intrathoracic tracheal width, but this dimension did not differ at RV. These results indicate that genetic factors influence, at least at RV, the tracheal rings more strongly than membranous parts. Intrathoracic tracheal depth but not width increases during inspiration in accordance with increase in lung volume. Extrathoracic tracheal width widens more than intrathoracic trachea from RV to TLC.


1992 ◽  
Vol 262 (6) ◽  
pp. R955-R965 ◽  
Author(s):  
O. Mathieu-Costello ◽  
J. M. Szewczak ◽  
R. B. Logemann ◽  
P. J. Agey

We investigated the relationship between capillary-to-fiber geometry and muscle aerobic capacity by comparing the bat flight muscle (pectoralis muscle), i.e., an ultimate case of extreme O2 demand in a mammalian skeletal muscle, with bat hindlimb and rat soleus muscles. At a given sarcomere length (2.1 microns), fiber cross-sectional area was considerably smaller in bat muscles (pectoralis 318 +/- 10 microns 2, hindlimb 447 +/- 35 microns 2) than in rat soleus muscle (2,027 +/- 125 microns 2). Capillary number per fiber cross-sectional area was much greater in bat pectoralis (6,394 +/- 380/mm2) than in bat hindlimb and rat soleus muscle (2,865 +/- 238 and 1,301 +/- 129/mm2, respectively; all values normalized to 2.1-microns sarcomere length). At the same sarcomere length (2.1 microns), the degree of tortuosity and branching of capillaries were significantly greater in bat pectoralis than in bat hindlimb and rat soleus muscle. In bat flight muscle, capillary length per fiber volume was very high (9,025 +/- 342/mm2). It was 2.2- and 5.4-fold larger than in bat hindlimb and rat soleus, respectively. Mitochondria occupied 35.3 +/- 1.2, 16.5 +/- 1.3, and 6.1 +/- 0.9% of the muscle fiber volume in bat pectoralis, hindlimb, and rat soleus muscles, respectively. There was a strong correlation between capillary length (as well as capillary surface) per fiber volume and mitochondrial volume density in all muscles. Considering capillary supply and mitochondrial volume on an individual fiber basis, we found that 1) the number of capillaries around a fiber was linearly related to mitochondrial volume per micron length of fiber in the muscles but that 2) capillary surface per fiber surface, at given mitochondrial volume per micron length of fiber, was about twice as large in bat pectoralis as in rat soleus muscle, whereas in bat hindlimb it was intermediate between that in bat pectoralis and that in rat soleus muscle. This was due to the differences in fiber size (rat soleus greater than bat muscles) and capillary-to-fiber ratio (bat pectoralis greater than hindlimb) between the muscles. It is notable that in the bat, the substantially greater O2 transfer capacity of the flight muscle compared with hindlimb was achieved by increasing the size of the capillary-to-fiber interface, i.e., capillary-to-fiber surface, via an increase in capillary number rather than by substantially reducing fiber size.


1996 ◽  
Vol 80 (3) ◽  
pp. 852-856 ◽  
Author(s):  
S. R. Muza ◽  
G. J. Criner ◽  
S. G. Kelsen

We tested the hypothesis that because the resting length of the canine sternomastoid (SM) muscles is relatively insensitive to lung volume change, the SM may maintain its inspiratory force generation regardless of lung volume. The relationships between SM pre- and postcontraction in situ fiber lengths and SM-produced inspiratory pressure generation [i.e., esophageal (Pes)] and rib cage displacements were examined in adult supine anesthetized dogs at residual volume (RV), functional residual capacity, and total lung capacity. SM muscle contraction was produced by isolated bilateral supramaximal electrical stimulation during hyperventilation-induced apnea. In all animals, SM contraction produced negative change in Pes (i.e., an inspiratory action). Passively increasing lung volume from RV to total lung capacity decreased (P < or = 0.01) the SM-produced Pes by -66 +/- 4% but had a relatively small effect on SM in situ pre- and postcontraction fiber length (< 3%). Whereas SM contraction at RV produced a cranial displacement of the sternum and increased the upper rib cage cross-sectional area, passively elevating lung volume diminished the SM-produced expansion of the upper rib cage. Hyperinflation did not increase the impedance of the sternum to cranial displacement during SM contraction, suggesting that hyperinflation caused a dissociation between the mechanical action of the sternum and the upper rib cage. These results suggest that mechanical dissociation of the ribs and sternum may diminish the contribution of the SM to inspiratory volume generation when breathing is done from elevated end-expiratory lung volumes.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1984 ◽  
Vol 56 (1) ◽  
pp. 52-56 ◽  
Author(s):  
T. S. Hurst ◽  
B. L. Graham ◽  
D. J. Cotton

We studied 10 symptom-free lifetime non-smokers and 17 smokers all with normal pulmonary function studies. All subjects performed single-breath N2 washout tests by either exhaling slowly (“slow maneuver”) from end inspiration (EI) to residual volume (RV) or exhaling maximally (“fast maneuver”) from EI to RV. After either maneuver, subjects then slowly inhaled 100% O2 to total lung capacity (TLC) and without breath holding, exhaled slowly back to RV. In the nonsmokers seated upright phase III slope of single-breath N2 test (delta N2/l) was lower (P less than 0.01) for the fast vs. the slow maneuver, but this difference disappeared when the subjects repeated the maneuvers in the supine position. In contrast, delta N2/l was higher for the fast vs. the slow maneuver (P less than 0.01) in smokers seated upright. For the slow maneuver, delta N2/l was similar between smokers and nonsmokers but for the fast maneuvers delta N2/l was higher in smokers than nonsmokers (P less than 0.01). We suggest that the fast exhalation to RV decreases delta N2/l in normal subjects by decreasing apex-to-base differences in regional ratio of RV to TLC (RV/TLC) but increases delta N2/l in smokers, because regional RV/TLC increases distal to sites of small airways obstruction when the expiratory flow rate is increased.


2020 ◽  
Vol 9 (11) ◽  
pp. 3761
Author(s):  
Takato Ikeda ◽  
Yoshiaki Kinoshita ◽  
Yusuke Ueda ◽  
Tomoya Sasaki ◽  
Hisako Kushima ◽  
...  

Background: Diagnostic criteria of idiopathic pleuroparenchymal fibroelastosis (IPPFE) were recently proposed, including physiological criteria of the body mass index (BMI) and percentage of the predicted values of residual volume (RV)/total lung capacity (TLC) (RV/TLC %pred.). The aim of this study was to evaluate (i) whether the physiologic criteria are useful for the diagnosis and (ii) whether the flat chest index, defined as the ratio of the anteroposterior diameter to the transverse diameter of the thoracic cage, could be an alternative parameter to RV/TLC %pred. Methods: We selected consecutive IPPFE patients and idiopathic pulmonary fibrosis (IPF) patients. We examined the diagnostic sensitivity and specificity of the physiological criteria and flat chest index for differentiating IPPFE patients from IPF patients. Results: This study included 37 IPPFE patients and 89 IPF patients. The physiological criteria distinguished IPPFE patients from IPF patients with a sensitivity of 78.6% and specificity of 88.0%. The combination of the flat chest index and BMI was also effective for differentiation (sensitivity of 82.1% and specificity of 89.3%). Conclusion: We verified the good performance of the physiologic criteria in a different cohort. When the RV/TLC is not measured, using the flat chest index instead of RV/TLC %pred. may be reasonable.


1980 ◽  
Vol 48 (2) ◽  
pp. 389-393 ◽  
Author(s):  
G. Hayatdavoudi ◽  
J. D. Crapo ◽  
F. J. Miller ◽  
J. J. O'Neil

The total lung capacity (TLC) of rats was measured in vivo and was compared to the displacement volume of the lungs following intratracheal fixation with glutaraldehyde or formaldehyde solution. When glutaraldehyde was used the speed of infusion of the fixative was an important factor in the final degree of lung inflation achieved. With a low rate of fixative infusion and a final pressure of 20 cm of fixative the glutaraldehyde-fixed lungs inflated to 55% TLC. With a high initial flow of glutaraldehyde and a final pressure of 20 cm of fixative the lungs inflated to 84% TLC. Fixation of lungs inside the intact chest wall was found to result in a higher degree of inflation. With a reservoir height of 20 cm and a low rate of fixative infusion lungs fixed in situ reached 74% TLC, whereas lungs fixed in situ, but from animals that have been exsanguinated prior to fixation, inflated to only 58% TLC. This suggests that the volume of the blood in the lungs prior to infusion of glutaraldehyde influences the degree of inflation achieved. Formaldehyde-fixed lungs required 72 h to be completely fixed and they were inflated to 90% TLC when a reservoir height of 20 cm was used. Because of the slow rate of fixation using with formaldehyde solution the rate of infusion was found not to limit the degree of inflation that could be achieved.


1988 ◽  
Vol 64 (2) ◽  
pp. 599-604 ◽  
Author(s):  
L. Tokics ◽  
G. Hedenstierna ◽  
B. Brismar ◽  
A. Strandberg ◽  
H. Lundquist

Thoracoabdominal restriction was brought on by means of a corset, and the subsequent effects on thoracic dimensions and lung tissue were studied by computerized tomography (CT) and by various lung function tests in supine healthy volunteers (mean age 30 yr). Restriction caused reductions in total lung capacity (helium equilibration) from mean 6.84 to 4.80 liters, in functional residual capacity (FRC) from 2.65 to 2.08 liters, and in vital capacity from 5.16 to 3.45 liters. Closing capacity (single-breath N2 washout) fell from 2.42 to 1.88 liters, thus matching the reduction in FRC. The static pressure-lung volume curve was shifted to the right by 1.5 cmH2O at 50% of total lung capacity. However, no change in the slope of the curve was observed. The diaphragm was moved cranially by 1.2 cm, and the thoracic cross-sectional area was reduced by a mean 32 cm2 at a level just above the diaphragm. No changes in the lung tissue were seen on CT scanning. Gas exchange, as assessed by multiple inert gas elimination technique and arterial blood gas analysis, was unaffected by restriction. It is concluded that in supine subjects, thoracoabdominal restriction that reduces FRC by 0.6 liter is not accompanied by atelectasis (normal CT scan). In this respect the result differs from that found in anesthetized supine subjects who show the same fall in FRC and atelectasis in dependent lung regions.


2011 ◽  
Vol 83 (3) ◽  
pp. 967-972 ◽  
Author(s):  
Viviane Soares ◽  
Fábio B. Rodrigues ◽  
Marcus F. Vieira ◽  
Maria Sebastiana Silva

The respiratory muscles can present fatigue and even chronic inability to generate force. So, reliable devices are necessary to their evaluation. The aim of this study is to evaluate the MEP (Maximal Expiratory Pressure) values of individuals between 20 and 25 years old and to validate a protocol using a pressure transducer and a signal conditioner comparing it with the digital manometer. We evaluated the MEP of 10 participants. They remained seated and made six respiratory maneuvers from Total Lung Capacity (TLC) to Residual Volume (RV). The results in the study showed no statistically significant differences when compared to values reported in the literature, and that the pressure transducer provides reliable values for MEP.


1993 ◽  
Vol 36 (3) ◽  
pp. 516-520 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Nancy Pearl Solomon ◽  
Thomas J. Hixon

This investigation was designed to test the hypothesis that voice onset time (VOT) varies as a function of lung volume. Recordings were made of five men as they repeated a phrase containing stressed /pi/ syllables, beginning at total lung capacity and ending at residual volume. VOT was found to be longer at high lung volumes and shorter at low lung volumes in most cases. This finding points out the need to take lung volume into account when using VOT as an index of laryngeal behavior in both healthy individuals and those with speech disorders.


Sign in / Sign up

Export Citation Format

Share Document