Effects of increases in carboxyhemoglobin percent saturation and tissue hypoxia on carbon monoxide binding to skeletal and heart extravascular tissues

Author(s):  
Ronald F. Coburn

The major goal of this article was to quantify relationships of the carboxyhemoglobin % saturation, a calculated tissue PCO and tissue hypoxia to the binding of carbon monoxide (CO) to canine skeletal and heart ventricular muscle extravascular (EV) tissue under normal conditions and during CO poisoning scenarios. These data are relevant to CO poisoning because CO bound to EV cellular hemoproteins evoke metabolic changes that produce toxic effects. Skeletal and heart muscle EV CO contents were calculated from data obtained from biopsies performed on living anesthetized dogs reported in previous publications (4, 6). Results include normal values of EV CO contents of resting skeletal muscle and heart ventricular muscle, effects of increasing COHb% saturation and a calculated mean tissue PCO on skeletal muscle EV CO binding, and effects of tissue hypoxia evoked by arterial hypoxemia on EV CO binding in both of these tissues. This study is the first that shows that tissue hypoxia-induced CO shifts out of blood resulting in increased EV CO binding are a mechanism that causes CO toxicity. Projections of results to tissue PCO levels occurring during different severe CO toxicity scenarios predict that skeletal muscle EV CO contents could increase as much as 100 to 300 fold.

1991 ◽  
Vol 69 (10) ◽  
pp. 1399-1404 ◽  
Author(s):  
P. Kubes ◽  
K. A. Nesbitt ◽  
S. M. Cain ◽  
C. K. Chapler

We questioned whether carbon monoxide hypoxia (COH) would affect peripheral blood flow by neural activation of adrenoceptors to the extent we had found in other forms of hypoxia. We studied this problem in hindlimb muscles of four groups of anesthetized dogs (untreated, α1-blocked, α1 + α2-blocked, and β2-blocked). Cardiac output increased, but hindlimb blood flow [Formula: see text] and resistance (RL) remained at prehypoxic levels during COH (O2 content reduced 50%) in untreated animals. When activity in the sciatic nerve was reversibly cold blocked, [Formula: see text] doubled and RL decreased 50%. These changes with nerve block were the same during COH, suggesting that neural activity to hindlimb vasculature was not increased by COH. In animals treated with phenoxybenzamine (primarily α1-blocked), RL dropped (~50%) during COH, an indication that catecholamines played a significant role in maintaining tone to skeletal muscle. Animals with both α1 + α2-adrenergic blockade (phenoxybenzamine and yohimbine added) did not survive COH. RL was higher in β2-block than in the untreated group during COH, but nerve cooling indicated that β2-adrenoceptor vasodilation was accomplished primarily by humoral means. The above findings demonstrated that adrenergic receptors were important in the regulation of [Formula: see text] and RL during COH, but they were not activated by sympathetic nerve stimulation to the limb muscles.Key words: α1-adrenoreceptor blockade, α2-adrenoreceptor blockade, peripheral vascular resistance, skeletal muscle, blood flow.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Shu-Chen Liao ◽  
Yan-Chiao Mao ◽  
Yao-Min Hung ◽  
Ching-Hsing Lee ◽  
Chen-Chang Yang

Objective. Delayed neuropsychiatric sequelae (DNS) are serious complications of carbon monoxide (CO) poisoning that adversely affect poisoned patients’ quality of life as well as socioeconomic status. This study aimed to determine clinical predictors of DNS in patients with CO poisoning. Methods. This retrospective study included all CO-poisoned patients admitted to the emergency department (ED) of Linkou Chang Gung Memorial Hospital in Taiwan from 1 January 2009 to 31 December 2015. The medical records of all patients with CO poisoning were carefully reviewed, and relevant data were abstracted into a standardised form. Univariate and multivariate logistic regression models were used to identify predictors of DNS after CO poisoning. Receiver operating characteristic (ROC) curve analysis was used to determine the ideal cut-off value for continuous variables that predict the development of DNS. Results. A total of 760 patients with CO poisoning were identified during the study period. Among them, 466 were eligible for the analysis of predictors of DNS. In multivariate analysis, Glasgow Coma Scale <9 (odds ratio [OR], 2.74; 95% confidence interval [CI], 1.21–6.21), transient loss of consciousness (OR, 3.59; 95% CI, 1.31–9.79), longer duration from CO exposure to ED presentation (OR, 1.05; 95% CI, 1.03–1.08), and corrected QT (QTc) prolongation (OR, 2.61; 95% CI, 1.21–5.61) were found to be associated with a higher risk of DNS. The area under the ROC curve (AUC) for QTc interval measured within 6 h after exposure best predicted the development of DNS, with a result of 0.729 (95% CI 0.660–0.791). Moreover, the best cut-off value of the QTc interval was 471 ms, with a sensitivity of 53.3% and a specificity of 85.1%. Conclusions. We identified several potential predictors of DNS following CO poisoning. Among them, QTc prolongation found within 6 h after exposure is a novel predictor of DNS, which may be helpful in the future care of patients with CO poisoning.


Sign in / Sign up

Export Citation Format

Share Document