Firing rate trajectories of human motor units during activity-dependent muscle potentiation

Author(s):  
Alexander M. Zero ◽  
Eric A. Kirk ◽  
Charles L. Rice

During activity-dependent potentiation (ADP) motor unit firing rates (MUFRs) are lower, however, the mechanism for this response is not known. During increasing torque isometric contractions at low contraction intensities, MUFR trajectories initially accelerate and saturate demonstrating a non-linear response due to the activation of persistent inward currents (PICs) at the motoneuron. The purpose was to assess whether PICs are a factor in the reduction of MUFRs during ADP. To assess this, MUFR trajectories were fit with competing functions of linear regression and a rising exponential (i.e., acceleration and saturation). Using fine-wire electrodes, discrete MU potential trains were recorded in the tibialis anterior during slowly increasing dorsiflexion contractions to 10% of maximal voluntary contraction following both voluntary (post-activation potentiation; PAP) and evoked (post-tetanic potentiation; PTP) contractions. In 8 participants, 25 MUs were recorded across both ADP conditions and compared to the control with no ADP effect. During PAP and PTP, the average MUFRs were 16.4% and 9.2% lower (both P≤ 0.001), respectively. More MUFR trajectories were better fit to the rising exponential during control (16/25) compared to PAP (4/25, P<0.001) and PTP (8/25, P=0.03). The MU samples that had a rising exponential MUFR trajectory during PAP and PTP displayed an ~11% lower initial acceleration compared to control (P<0.05). Thus, synaptic amplification and MUFR saturation due to PIC properties are attenuated during ADP regardless of the type of conditioning contraction. This response may contribute to lower MUFRs and likely occurred because synaptic input is reduced when contractile function is enhanced.

Author(s):  
Obaid U Khurram ◽  
Francesco Negro ◽  
CJ Heckman ◽  
Christopher K. Thompson

Persistent inward currents (PICs) play an essential role in setting motor neuron gain and shaping motor unit firing patterns. Estimates of PICs in humans can be made using the paired motor unit analysis technique, which quantifies the difference in discharge rate of a lower-threshold motor unit at the recruitment onset and offset of a higher-threshold motor unit (∆F). Because PICs are highly dependent on the level of neuromodulatory drive, ∆F represents an estimate of level of neuromodulation at the level of the spinal cord. Most of the estimates of ∆F are performed under constrained, isometric, seated conditions. In the present study, we used high-density surface EMG arrays to discriminate motor unit firing patterns during isometric seated conditions with torque or EMG visual feedback and during unconstrained standing anterior-to-posterior movements with RMS EMG visual feedback. We were able to apply the paired motor unit analysis technique to the decomposed motor units in each of the three conditions. We hypothesized that ∆F would be higher during unconstrained standing anterior-to-posterior movements compared to the seated conditions, reflecting an increase in the synaptic input to MNs drive while standing. In agreement with previous work, we found that there was no evidence of a difference in ∆F between the seated and standing postures, although slight differences in the initial and peak discharge rates were observed. Taken together, our results suggest that both the standing and seated postures are likely not sufficiently different--both being "upright" postures--to result in large changes in neuromodulatory drive.


1998 ◽  
Vol 85 (5) ◽  
pp. 1684-1692 ◽  
Author(s):  
L. Griffin ◽  
S. J. Garland ◽  
T. Ivanova

The purpose of this study was to determine whether short interspike intervals (ISIs of <20 ms) would occur naturally during voluntary movement and would increase in number with fatigue. Thirty-four triceps brachii motor units from nine subjects were assessed during a fatigue task consisting of fifty extension and fifty flexion elbow movements against a constant-load opposing extension. Nineteen motor units were recorded from the beginning of the fatigue task; the number of short ISIs was 7.1 ± 4.1% of the total number of ISIs in the first one-third of the task (unfatigued state). This value increased to 11.8 ± 5.9% for the last one-third of the task (fatigued state). Fifteen motor units were recruited during the fatigue task and discharged, with 16.4 ± 6.0% of short ISIs in the fatigued state. For all motor units, the number of short ISIs was positively correlated ( r 2 = 0.85) with the recruitment threshold torque. Short ISIs occurred most frequently at movement initiation but also occurred throughout the movement. These results document the presence of short ISIs during voluntary movement and their increase in number during fatigue.


2020 ◽  
Vol 131 (6) ◽  
pp. 1399-1406 ◽  
Author(s):  
Matthew G. Birkbeck ◽  
Linda Heskamp ◽  
Ian S. Schofield ◽  
Andrew M. Blamire ◽  
Roger G. Whittaker

Sign in / Sign up

Export Citation Format

Share Document