Role of nitric oxide in exercise sympatholysis

2004 ◽  
Vol 97 (1) ◽  
pp. 417-423 ◽  
Author(s):  
John B. Buckwalter ◽  
Jessica C. Taylor ◽  
Jason J. Hamann ◽  
Philip S. Clifford

The production of nitric oxide is the putative mechanism for the attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during exercise. We hypothesized that nitric oxide synthase blockade would eliminate the reduction in α-adrenergic-receptor responsiveness in exercising skeletal muscle. Ten mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective α1-adrenergic agonist (phenylephrine) or the selective α2-adrenergic agonist (clonidine) was infused as a bolus into the femoral artery catheter at rest and during mild and heavy exercise. Before nitric oxide synthase inhibition with NG-nitro-l-arginine methyl ester (l-NAME), intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of −91 ± 3, −80 ± 5, and −75 ± 6% (means ± SE) at rest, 3 miles/h, and 6 miles/h and 10% grade, respectively. Intra-arterial clonidine reduced vascular conductance by −65 ± 6, −39 ± 4, and −30 ± 3%. After l-NAME, intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of −85 ± 5, −85 ± 5, and −84 ± 5%, whereas clonidine reduced vascular conductance by −67 ± 5, −45 ± 3, and −35 ± 3%, at rest, 3 miles/h, and 6 miles/h and 10% grade. α1-Adrenergic-receptor responsiveness was attenuated during heavy exercise. In contrast, α2-adrenergic-receptor responsiveness was attenuated even at a mild exercise intensity. Whereas the inhibition of nitric oxide production eliminated the exercise-induced attenuation of α1-adrenergic-receptor responsiveness, the attenuation of α2-adrenergic-receptor responsiveness was unaffected. These results suggest that the mechanism of exercise sympatholysis is not entirely mediated by the production of nitric oxide.

2005 ◽  
Vol 98 (4) ◽  
pp. 1584-1585
Author(s):  
Adriaan M. Kamper ◽  
Anton J. M. de Craen

The production of nitric oxide is the putative mechanism for the attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during exercise. We hypothesized that nitric oxide synthase blockade would eliminate the reduction in α-adrenergic-receptor responsiveness in exercising skeletal muscle. Ten mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective α1-adrenergic agonist (phenylephrine) or the selective α2-adrenergic agonist (clonidine) was infused as a bolus into the femoral artery catheter at rest and during mild and heavy exercise. Before nitric oxide synthase inhibition with NG-nitro-l-arginine methyl ester l-NAME), intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of −91 ± 3, −80 ± 5, and −75 ± 6% (means ± SE) at rest, 3 miles/h, and 6 miles/h and 10% grade, respectively. Intra-arterial clonidine reduced vascular conductance by −65 ± 6, −39 ± 4, and −30 ± 3%. After l-NAME, intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of −85 ± 5, −85 ± 5, and −84 ± 5%, whereas clonidine reduced vascular conductance by −67 ± 5, −45 ± 3, and −35 ± 3%, at rest, 3 miles/h, and 6 miles/h and 10% grade. α1-Adrenergic-receptor responsiveness was attenuated during heavy exercise. In contrast, α2-adrenergic-receptor responsiveness was attenuated even at a mild exercise intensity. Whereas the inhibition of nitric oxide production eliminated the exercise-induced attenuation of α1-adrenergic-receptor responsiveness, the attenuation of α2-adrenergic-receptor responsiveness was unaffected. These results suggest that the mechanism of exercise sympatholysis is not entirely mediated by the production of nitric oxide.


2001 ◽  
Vol 90 (1) ◽  
pp. 172-178 ◽  
Author(s):  
John B. Buckwalter ◽  
Jay S. Naik ◽  
Zoran Valic ◽  
Philip S. Clifford

Attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during dynamic exercise is controversial. A potential mechanism is a reduction in α-adrenergic-receptor responsiveness. The purpose of this study was to examine α1- and α2-adrenergic-receptor-mediated vasoconstriction in resting and exercising skeletal muscle using intra-arterial infusions of selective agonists. Thirteen mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective α1-adrenergic agonist (phenylephrine) or the selective α2-adrenergic agonist (clonidine) was infused as a bolus into the femoral artery catheter at rest and during mild and heavy exercise. Intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of 76 ± 4, 71 ± 5, and 31 ± 2% at rest, 3 miles/h, and 6 miles/h and 10% grade, respectively. Intra-arterial clonidine reduced vascular conductance by 81 ± 5, 49 ± 4, and 14 ± 2%, respectively. The response to intra-arterial infusion of clonidine was unaffected by surgical sympathetic denervation. Agonist infusion did not affect either systemic blood pressure, heart rate, or blood flow in the contralateral iliac artery. α1-Adrenergic-receptor responsiveness was attenuated during heavy exercise. In contrast, α2-adrenergic-receptor responsiveness was attenuated even at a mild exercise intensity. These results suggest that the mechanism of exercise sympatholysis may involve reductions in postsynaptic α-adrenergic-receptor responsiveness.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Patrick Nicholas Colleran ◽  
Miles A. Tanner ◽  
Shena L. Latcham ◽  
Sara L. Collier ◽  
M. Harold Laughlin ◽  
...  

1998 ◽  
Vol 30 (Supplement) ◽  
pp. 144
Author(s):  
C. C. Lin ◽  
T. L. Lin ◽  
S. M. Yu ◽  
S. S. Hsieh

Physiology ◽  
1999 ◽  
Vol 14 (2) ◽  
pp. 74-80 ◽  
Author(s):  
Ulrich Pohl ◽  
Cor de Wit

Nitric oxide synthase (NOS) inhibitors induce significant vasoconstriction, suggesting an indispensable role of NO as a local vasodilator. This is due mainly to its effects on large arterioles that significantly control arterial conductance while scarcely being regulated by metabolites. NO’s role in adapting vascular conductance to flow is pronounced during (re)active hyperemia and autoregulation.


Author(s):  
Qingtong Wang ◽  
Ying Wang ◽  
Toni M West ◽  
Yongming Liu ◽  
Gopireddy R Reddy ◽  
...  

Abstract Aims β-blockers are widely used in therapy for heart failure and hypertension. β-blockers are also known to evoke additional diversified pharmacological and physiological effects in patients. We aim to characterize the underlying molecular signalling and effects on cardiac inotropy induced by β-blockers in animal hearts. Methods and results Wild-type mice fed high-fat diet (HFD) were treated with carvedilol, metoprolol, or vehicle and echocardiogram analysis was performed. Heart tissues were used for biochemical and histological analyses. Cardiomyocytes were isolated from normal and HFD mice and rats for analysis of adrenergic signalling, calcium handling, contraction, and western blot. Biosensors were used to measure β-blocker-induced cyclic guanosine monophosphate (cGMP) signal and protein kinase A activity in myocytes. Acute stimulation of myocytes with carvedilol promotes β1 adrenergic receptor (β1AR)- and protein kinase G (PKG)-dependent inotropic cardiac contractility with minimal increases in calcium amplitude. Carvedilol acts as a biased ligand to promote β1AR coupling to a Gi-PI3K-Akt-nitric oxide synthase 3 (NOS3) cascade and induces robust β1AR-cGMP-PKG signal. Deletion of NOS3 selectively blocks carvedilol, but not isoproterenol-induced β1AR-dependent cGMP signal and inotropic contractility. Moreover, therapy with carvedilol restores inotropic contractility and sensitizes cardiac adrenergic reserves in diabetic mice with minimal impact in calcium signal, as well as reduced cell apoptosis and hypertrophy in diabetic hearts. Conclusion These observations present a novel β1AR-NOS3 signalling pathway to promote cardiac inotropy in the heart, indicating that this signalling paradigm may be targeted in therapy of heart diseases with reduced ejection fraction.


2001 ◽  
Vol 86 (6) ◽  
pp. 749-757 ◽  
Author(s):  
Timothy I. Musch ◽  
Richard M. McAllister ◽  
J. David Symons ◽  
Charles L. Stebbins ◽  
Tadakazu Hirai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document