scholarly journals The Effect of Limb Position on a Static Knee Extension Task can be Explained with a Simple Spinal Cord Circuit Model

Author(s):  
Gareth James Richard York ◽  
Hugh Osborne ◽  
Piyanee Sriya ◽  
Sarah Astill ◽  
Marc de Kamps ◽  
...  

The influence of proprioceptive feedback on muscle activity during isometric tasks is the subject of conflicting studies. We performed an isometric knee extension task experiment based on two common clinical tests for mobility and flexibility. The task was carried out at four pre-set angles of the knee and we recorded from five muscles for two different hip positions. We applied muscle synergy analysis using non-negative matrix factorisation on surface electromyograph recordings to identify patterns in the data which changed with internal knee angle, suggesting a link between proprioception and muscle activity. We hypothesised that such patterns arise from the way proprioceptive and cortical signals are integrated in neural circuits of the spinal cord. Using the MIIND neural simulation platform, we developed a computational model based on current understanding of spinal circuits with an adjustable afferent input. The model produces the same synergy trends as observed in the data, driven by changes in the afferent input. In order to match the activation patterns from each knee angle and position of the experiment, the model predicts the need for three distinct inputs: two to control a non-linear bias towards the extensors and against the flexors, and a further input to control additional inhibition of rectus femoris. The results show that proprioception may be involved in modulating muscle synergies encoded in cortical or spinal neural circuits.

2019 ◽  
Author(s):  
Gareth York ◽  
Hugh Osborne ◽  
Piyanee Sriya ◽  
Sarah Astill ◽  
Marc de Kamps ◽  
...  

AbstractProprioceptive feedback and its role in control of isometric tasks is often overlooked. In this study recordings were made from upper leg muscles during an isometric knee extension task. Internal knee angle was fixed and subjects were asked to voluntarily activate their rectus femoris muscle. Muscle synergy analysis of these recordings identified canonical temporal patterns in the data. These synergies were found to encode two separate features: one concerning the coordinated contraction of the recorded muscles and the other indicating agonistic/antagonistic interactions between these muscles. The second synergy changed with internal knee angle reflecting the influence of afferent activity. This is in contrast to previous studies of dynamic task experiments which have indicated that proprioception has a negligible effect on synergy expression. Using the MIIND neural simulation platform, we developed a spinal population model with an adjustable input representing proprioceptive feedback. The model is based on existing spinal population circuits used for dynamic tasks. When the same synergy analysis was performed on the output from the model, qualitatively similar muscle synergy patterns were observed. These results suggest proprioceptive feedback is integrated in the spinal cord to control isometric tasks via muscle synergies.Significance statementSensory feedback from muscles is a significant factor in normal motor control. It is often assumed that instantaneous muscle stretch does not influence experiments where limbs are held in a fixed position. Here, we identified patterns of muscle activity during such tasks showing that this assumption should be revisited. We also developed a computational model to propose a possible mechanism, based on a network of populations of neurons, that could explain this phenomenon. The model is based on well established neural circuits in the spinal cord and fits closely other models used to simulate more dynamic tasks like locomotion in vertebrates.Conflict of interest statementThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hannah Lena Siebers ◽  
Jörg Eschweiler ◽  
Filippo Migliorini ◽  
Valentin Michael Quack ◽  
Markus Tingart ◽  
...  

Abstract Muscle imbalances are a leading cause of musculoskeletal problems. One example are leg length inequalities (LLIs). This study aimed to analyze the effect of different (simulated) LLIs on back and leg muscles in combination with kinematic compensation mechanics. Therefore, 20 healthy volunteers were analyzed during walking with artificial LLIs (0–4 cm). The effect of different amounts of LLIs and significant differences to the reference condition without LLI were calculated of maximal joint angles, mean muscle activity, and its symmetry index. While walking, LLIs led to higher muscle activity and asymmetry of back muscles, by increased lumbar lateral flexion and pelvic obliquity. The rectus femoris showed higher values, independent of the amount of LLI, whereas the activity of the gastrocnemius on the shorter leg increased. The hip and knee flexion of the long leg increased significantly with increasing LLIs, like the knee extension and the ankle plantarflexion of the shorter leg. The described compensation mechanisms are explained by a dynamic lengthening of the short and shortening of the longer leg, which is associated with increased and asymmetrical muscle activity. Presenting this overview is important for a better understanding of the effects of LLIs to improve diagnostic and therapy in the future.


2002 ◽  
Vol 93 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min ( experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC ( experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels ≤5.0% of MVC.


2006 ◽  
Vol 101 (3) ◽  
pp. 715-720 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara

Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [≤5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 ± 2.0 times/h) and RF-VM (7.0 ± 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 ± 0.7 times/h). MVC force after the sustained contraction decreased by 14% ( P < 0.01) from 573.6 ± 145.2 N to 483.3 ± 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs ( P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.


2009 ◽  
Vol 101 (2) ◽  
pp. 969-979 ◽  
Author(s):  
Monica A. Gorassini ◽  
Jonathan A. Norton ◽  
Jennifer Nevett-Duchcherer ◽  
Francois D. Roy ◽  
Jaynie F. Yang

Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury.


1980 ◽  
Vol 21 (Supplement) ◽  
pp. S3
Author(s):  
A. V. Ng ◽  
J. C. Agre ◽  
M. S. Harrington ◽  
F. J. Nagle

2014 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
António M. VencesBrito ◽  
Marco A. Colaço Branco ◽  
Renato M. Cordeiro Fernandes ◽  
Mário A. Rodrigues Ferreira ◽  
Orlando J. S. M. Fernandes ◽  
...  

Presently, coaches and researchers need to have a better comprehension of the kinesiological parameters that should be an important tool to support teaching methodologies and to improve skills performance in sports. The aim of this study was to (i) identify the kinematic and neuromuscular control patterns of the front kick (<em>mae-geri</em>) to a fixed target performed by 14 experienced karate practitioners, and (ii) compare it with the execution of 16 participants without any karate experience, allowing the use of those references in the analysis of the training and learning process. Results showed that the kinematic and neuromuscular activity during the kick performance occurs within 600 ms. Muscle activity and kinematic analysis demonstrated a sequence of activation bracing a proximal-to-distal direction, with the muscles presenting two distinct periods of activity (1, 2), where the karateka group has a greater intensity of activation – root mean square (RMS) and electromyography (EMG) peak – in the first period on <em>Rectus Femoris</em> (RF1) and  <em>Vastus Lateralis</em> (VL1) and a lower duration of co-contraction in both periods on <em>Rectus Femoris</em>-<em>Biceps Femoris</em> and <em>Vastus Lateralis</em>-<em>Biceps Femoris</em> (RF-BF; VL-BF). In the skill performance, the hip flexion, the knee extension and the ankle plantar flexion movements were executed with smaller difference in the range of action (ROA) in the karateka group, reflecting different positions of the segments. In conclusion, it was observed a general kinesiological pattern, which was similar in karateka and non-karateka practitioners. However, in the karateka group, the training induces a specialization in the muscle activity reflected in EMG and kinematic data, which leads to a better ballistic performance in the execution of the <em>mae-geri</em> kick, associated with a maximum speed of the distal segments, reached closer to the impact moment, possibly representing more power in the contact.


2020 ◽  
Vol 117 (14) ◽  
pp. 8135-8142 ◽  
Author(s):  
Cristiano Alessandro ◽  
Filipe O. Barroso ◽  
Adarsh Prashara ◽  
David P. Tentler ◽  
Hsin-Yun Yeh ◽  
...  

Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.


2009 ◽  
Vol 102 (5) ◽  
pp. 2856-2865 ◽  
Author(s):  
Laila Alibiglou ◽  
Citlali López-Ortiz ◽  
Charles B. Walter ◽  
David A. Brown

It is well established that the sensorimotor state of one limb can influence another limb and therefore bilateral somatosensory inputs make an important contribution to interlimb coordination patterns. However, the relative contribution of interlimb pathways for modifying muscle activation patterns in terms of phasing is less clear. Here we studied adaptation of muscle activity phasing to the relative angular positions of limbs using a split-crank ergometer, where the cranks could be decoupled to allow different spatial angular position relationships. Twenty neurologically healthy individuals performed the specified pedaling tasks at different relative angular positions while surface electromyographic (EMG) signals were recorded bilaterally from eight lower extremity muscles. During each experiment, the relative angular crank positions were altered by increasing or decreasing their difference by randomly ordered increments of 30° over the complete cycle [0° (in phase pedaling); 30, 60, 90, 120, 150, and 180° (standard pedaling); and 210, 240, 270, 300, and 330° out of phase pedaling]. We found that manipulating the relative angular positions of limbs in a pedaling task caused muscle activity phasing changes that were either delayed or advanced, dependent on the relative spatial position of the two cranks and this relationship is well-explained by a sine curve. Further, we observed that the magnitude of phasing changes in biarticular muscles (like rectus femoris) was significantly greater than those of uniarticular muscles (like vastus medialis). These results are important because they provide new evidence that muscle phasing can be systematically influenced by interlimb pathways.


Author(s):  
Joaquín Calatayud ◽  
Sofía Pérez-Alenda ◽  
Juan J Carrasco ◽  
Adrián Escriche-Escuder ◽  
Carlos Cruz-Montecinos ◽  
...  

Abstract Background Ankles and knees are commonly affected in people with hemophilia and thus are targets for prevention or rehabilitation. However, to our knowledge, no studies have evaluated muscle activity and safety during exercises targeting the lower limbs in people with hemophilia; this lack of information hinders clinical decision-making. Objective The aim of this study was to compare the tolerability of, safety of, and muscle activity levels obtained with external resistance (elastic or machine)–based and non–external resistance–based lower limb exercises in people with hemophilia. Design This was a cross-sectional study. Methods Eleven people who had severe hemophilia and were undergoing prophylactic treatment participated. In a single experimental session, participants performed knee extension and ankle plantar flexion during 3 exercise conditions in random order: elastic band–based resistance (elastic resistance), machine-based resistance (machine resistance), and no external resistance. Exercise intensities for the 2 external resistance–based conditions were matched for perceived exertion. Muscle activity was determined using surface electromyography (EMG) for the rectus femoris, biceps femoris, gastrocnemius lateralis, and tibialis anterior muscles. Participants were asked to rate exercise tolerability according to a scale ranging from “very well tolerated” to “not tolerated” and to report possible adverse effects 24 and 48 hours after the session. Results No adverse effects were reported, and exercise tolerability was generally high. In the knee extension exercise, the rectus femoris normalized EMG values during the elastic resistance and machine resistance conditions were similar; 29% to 30% higher activity was obtained during these conditions than during the non–external resistance condition. In the ankle plantar flexion exercise, the gastrocnemius lateralis normalized EMG value was 34% higher during the machine resistance condition than without external resistance, and the normalized EMG values during the elastic resistance and other conditions were similar. Limitations The small sample size and single training session were the primary limitations of this study. Conclusions Exercises performed both with elastic bands and with machines at moderate intensity are safe, feasible, and efficient in people with severe hemophilia, providing comparable activity levels in the agonist muscles.


Sign in / Sign up

Export Citation Format

Share Document