Modulation of Trigeminal Spinal Subnucleus Caudalis Neuronal Activity Following Regeneration of Transected Inferior Alveolar Nerve in Rats

2008 ◽  
Vol 99 (5) ◽  
pp. 2251-2263 ◽  
Author(s):  
Kimiko Saito ◽  
Suzuro Hitomi ◽  
Ikuko Suzuki ◽  
Yuji Masuda ◽  
Junichi Kitagawa ◽  
...  

Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. To clarify the neuronal mechanisms of abnormal pain in the face innervated by the regenerated inferior alveolar nerve (IAN), nocifensive behavior, trigeminal ganglion neuronal labeling following Fluorogold (FG) injection into the mental skin, and trigeminal spinal subnucleus caudalis (Vc) neuronal properties were examined in rats with IAN transection. The mechanical escape threshold was significantly higher at 3 days and lower at 14 days after IAN transection, whereas head withdrawal latency to heat was significantly longer at 3, 14, and 60 days after IAN transection. The number of FG-labeled ganglion neurons was significantly reduced at 3 days after IAN transection but increased at 14 and 60 days. The number of wide dynamic range (WDR) neurons with background (BG) activity was significantly higher at 14 and 60 days after IAN transection compared with naïve rats, and the number of WDR and low-threshold mechanoreceptive (LTM) neurons with irregularly bursting BG activity was increased at these two time points. Mechanically evoked responses were significantly larger in WDR and LTM neurons 14 days after IAN transection compared with naïve rats. Heat- and cold-evoked responses in WDR neurons were significantly lower at 14 days after transection compared with naïve rats. Mechanoreceptive fields were also significantly larger in WDR and LTM neurons at 14 and 60 days after IAN transection. These findings suggest that these alterations may be involved in the development of mechanical allodynia in the cutaneous region innervated by the regenerated IAN.

1999 ◽  
Vol 82 (6) ◽  
pp. 3046-3055 ◽  
Author(s):  
Steven L. Jinks ◽  
E. Carstens

Nicotine evokes pain in the skin and oral mucosa and excites a subpopulation of cutaneous nociceptors, but little is known about the central transmission of chemogenic pain. We have investigated the responses of lumbar spinal wide dynamic range (WDR)-type dorsal horn neurons to intracutaneous (ic) microinjection of nicotine in pentobarbital-anesthetized rats. Nearly all (97%) units responded to nicotine microinjected ic (1 μl) into the low-threshold region of the hind-paw mechanosensitive receptive field in a concentration-related manner (0.01–10%). Responses to repeated injections of 10% nicotine exhibited tachyphylaxis at 5-, 10-, and 15-min interstimulus intervals. Significant tachyphylaxis was not seen with 1% nicotine. All nicotine-responsive units tested ( n = 30) also responded to ic histamine (1 μl, 3%) and did not exhibit tachyphylaxis to repeated histamine. However, there was significant cross-tachyphylaxis of nicotine to histamine. Thus 5 min after ic nicotine, histamine-evoked responses were attenuated significantly compared with the initial histamine-evoked response prior to nicotine, with partial recovery over the ensuing 15 min. Neuronal excitation by ic nicotine was not mediated by histamine H1 receptors because ic injection of the H1 receptor antagonist, cetirizine, had no effect on ic nicotine-evoked responses, whereas it significantly attenuated ic histamine-evoked responses in the same neurons. The lowest-threshold portion of cutaneous receptive fields showed a significant expansion in area at 20 min after ic nicotine 10%, indicative of sensitization. Responses to 1% nicotine were significantly reduced after ic injection of the nicotinic antagonist, mecamylamine (0.1% ic), with no recovery over the ensuing 40–60 min. These data indicate that nicotine ic excites spinal WDR neurons, partly via neuronal nicotinic acetylcholine receptors that are presumably expressed in cutaneous nociceptor terminals. Repeated injections of high concentrations of nicotine led to tachyphylaxis and cross-tachyphylaxis with histamine, possibly relevant to peripheral analgesic effects of nicotine.


2001 ◽  
Vol 86 (6) ◽  
pp. 2868-2877 ◽  
Author(s):  
Koichi Iwata ◽  
Takao Imai ◽  
Yoshiyuki Tsuboi ◽  
Akimasa Tashiro ◽  
Akiko Ogawa ◽  
...  

The effects of inferior alveolar nerve (IAN) transection on escape behavior and MDH neuronal activity to noxious and nonnoxious stimulation of the face were precisely analyzed. Relative thresholds for escape from mechanical stimulation applied to the whisker pad area ipsilateral to the transection were significantly lower than that for the contralateral and sham-operated whisker pad until 28 days after the transection, then returned to the preoperative level at 40 days after transection. A total of 540 neurons were recorded from the medullary dorsal horn (MDH) of the nontreated naive rats [low-threshold mechanoreceptive (LTM), 27; wide dynamic range (WDR), 31; nociceptive specific (NS), 11] and sham-operated rats with skin incision (LTM, 34; WDR, 30; NS, 23) and from the ipsilateral (LTM, 82; WDR, 82; NS, 31) and contralateral MDH relative to the IAN transection (LTM, 77; WDR, 82; NS, 33). The electrophysiological properties of these neurons were precisely analyzed. Background activity of WDR neurons on the ipsilateral side relative to the transection was significantly increased at 2–14 days after the operation as compared with that of naive rats. Innocuous and noxious mechanical-evoked responses of LTM and WDR neurons were significantly enhanced at 2–14 days after IAN transection. The mean area of the receptive fields of WDR neurons was significantly larger on the ipsilateral MDH at 2–7 days after transection than that of naive rats. We could not observe any modulation of thermal responses of WDR and NS neurons following IAN transection. Also, no MDH neurons were significantly affected in the rats with sham operations. The present findings suggest that the increment of neuronal activity of WDR neurons in the MDH following IAN transection may play an important role in the development of the mechano-allodynia induced in the area adjacent to the area innervated by the injured nerve.


2009 ◽  
Vol 101 (4) ◽  
pp. 1742-1748 ◽  
Author(s):  
Carolyn M. Sawyer ◽  
Mirela Iodi Carstens ◽  
Christopher T. Simons ◽  
Jay Slack ◽  
T. Scott McCluskey ◽  
...  

The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-α-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool—isobutylalkenyl amide (IBA)—excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR and low-threshold units responded to intradermal injection of IBA in a dose-related manner over a >5-min time course and exhibited tachyphylaxis at higher concentrations (1 and 10%). Almost all WDR and low-threshold units additionally responded to the pungent agents mustard oil (allyl isothiocyanate) and/or capsaicin, prompting reclassification of the low-threshold cells as WDR. The results are discussed in terms of the functional role of WDR neurons in mediating tingle sensation.


1989 ◽  
Vol 61 (6) ◽  
pp. 1197-1206 ◽  
Author(s):  
J. W. Hu ◽  
B. J. Sessle

1. Effects of deafferentation of the tooth pulps of the posterior mandibular teeth were studied in single neurons recorded in the ipsilateral subnucleus caudalis of the trigeminal (V) spinal tract nucleus of adult cats and kittens. The functional properties of neurons in each anesthetized animal were determined electro-physiologically in a series of microelectrode penetrations of the subnucleus. 2. The more than 800 neurons investigated could be subdivided on the basis of their cutaneous mechanoreceptive field properties into low-threshold mechanoreceptive (LTM) neurons, wide dynamic range (WDR) neurons, or nociceptive-specific (NS) neurons. Comparisons of neuronal properties were made between control (intact) cats and 7-15 day deafferented cats studied in a blind design, as well as groups of longer term deafferented cats, and kittens undergoing a “natural” deafferentation as a result of exfoliation of primary teeth. 3. There was no apparent change in the somatotopic pattern of organization of the subnucleus in the kittens and pulp-deafferented cats and no statistically significant differences were noted between kittens and control cats in any property except for alterations in the incidence of spontaneously active neurons. 4. Limited but statistically significant alterations were noted in some of the neuronal properties in the deafferented cats. These changes were especially apparent in the LTM neurons. The incidence of spontaneous activity was significantly decreased in the neurons of most long-term deafferented groups of cats. In the 7–15 day deafferented group, significantly more LTM neurons had a mechanoreceptive field involving all three divisions of the V nerve, and there was a significant increase in the incidence of LTM neurons activated by electrical stimulation of intraoral sites. Mechanosensitive neurons responsive only to tap stimuli were found only in the deafferented groups of cats. 5. These alterations in caudalis contrast with previous reports claiming marked hyperexcitability of caudal V brain stem neurons as a consequence of deafferentation and implicating such effects in the development of pain. However, some of the changes are in general not inconsistent with deafferentation-induced changes reported in spinal somatosensory neurons and with the pulp deafferentation-induced changes that we have recently documented in LTM neurons of subnucleus oralis of the V spinal tract nucleus of adult cats.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 80 (4) ◽  
pp. 2210-2214 ◽  
Author(s):  
Kai-Ming Zhang ◽  
Xiao-Min Wang ◽  
Angela M. Peterson ◽  
Wen-Yan Chen ◽  
Sukhbir S. Mokha

Kai-Ming Zhang, Xiao-Min Wang, Angela M. Peterson, Wen-Yan Chen, and Sukhbir S. Mokha. α2-Adrenoceptors modulate NMDA-evoked responses of neurons in the superficial and deeper dorsal horn of the medulla. J. Neurophysiol. 80: 2210–2214, 1998. Extracellular single unit recordings were made from neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in 21 male rats anesthetized with urethan. NMDA produced an antagonist-reversible excitation of 46 nociceptive as well as nonnociceptive neurons. Microiontophoretic application of a preferential α2-adrenoceptor (α2AR) agonist, (2-[2,6-dichloroaniline]-2-imidazoline) hydrochloride (clonidine), reduced the NMDA-evoked responses of 86% (6/7) of nociceptive-specific (NS) neurons, 82% (9/11) of wide dynamic range (WDR) neurons, and 67% (4/6) of low-threshold (LT) neurons in the superficial dorsal horn. In the deeper dorsal horn, clonidine inhibited the NMDA-evoked responses of 94% (16/17) of NS and WDR neurons and 60% (3/5) of LT neurons. Clonidine facilitated the NMDA-evoked responses in 14% (1/17) of NS, 9% (1/11) of WDR, and 33% (2/6) of LT neurons in the superficial dorsal horn. Idazoxan, an α2AR antagonist, reversed the inhibitory effect of clonidine in 90% (9/10) of neurons, whereas prazosin, an α1-adrenoceptor antagonist with affinity for α2BAR, and α2CAR, were ineffective. We suggest that activation of α2ARs produces a predominantly inhibitory modulation of the NMDA-evoked responses of nociceptive neurons in the medullary dorsal horn.


2002 ◽  
Vol 97 (2) ◽  
pp. 412-417 ◽  
Author(s):  
Masanori Yamauchi ◽  
Hiroshi Sekiyama ◽  
Steven G. Shimada ◽  
J. G. Collins

Background A major effect of general anesthesia is lack of response in the presence of a noxious stimulus. Anesthetic depression of spinal sensory neuronal responses to noxious stimuli is likely to contribute to that essential general anesthetic action. The authors tested the hypothesis that gamma-aminobutyric acid receptor type A (GABA(A)) and strychnine-sensitive glycine receptor systems mediate halothane depression of spinal sensory neuronal responses to noxious stimuli. Methods Extracellular activity of single spinal dorsal horn wide dynamic range (WDR) neurons was recorded in decerebrate, spinal cord transected rats. Neuronal responses to noxious (thermal and mechanical) and nonnoxious stimuli were examined in the drug-free state. Subsequently, cumulative doses (0.1-2.0 mg/kg) of bicuculline (GABA(A) antagonist) or strychnine (glycine antagonist) were administered intravenously in the absence or presence of 1 minimum alveolar concentration (MAC) of halothane. Results Halothane, 1.1%, depressed the response of WDR neurons to both forms of noxious stimuli. Antagonists, by themselves, had no effect on noxiously evoked activity. However, bicuculline and strychnine (maximum cumulative dose, 2.0 mg/kg) partially but significantly reversed the halothane depression of noxiously evoked activity. Similar results were seen with most, but not all, forms of nonnoxiously evoked activity. In the absence of halothane, strychnine significantly increased neuronal responses to low threshold receptive field brushing. Conclusion Halothane depression of spinal WDR neuronal responses to noxious and most nonnoxious stimuli is mediated, in part, by GABA(A) and strychnine-sensitive glycine systems. A spinal source of glycine tonically inhibits some forms of low threshold input to WDR neurons.


2001 ◽  
Vol 16 (26) ◽  
pp. 1667-1670
Author(s):  
◽  
YUQIAN MA

L3 + C is a branch experiment on L3 magnet spectrometer, which is located on the ring of LEP accelerator at CERN. To take the advantage of L3 muon chambers in its low threshold, wide dynamic range and high resolution, the momentum of cosmic ray muons in the range of 15–2000 GeV/c at a shallow depth of 30 m of molasse can be measured precisely. Since 1998, a scintillator detector system, a new fast trigger and DAQ system, and a small air shower array had been established for study the CR muon events independently. Up to August 2000, 8 billion muons and 25 million air shower events had been recorded. The first results for CR muon spectrum and the charge ratio etc. had been obtained.


1995 ◽  
Vol 74 (4) ◽  
pp. 1549-1562 ◽  
Author(s):  
J. F. Herrero ◽  
P. M. Headley

1. To compare the responsiveness of lumbar spinal neurons to peripheral sensory stimuli under normal physiological conditions and under halothane anesthesia, we performed a study in sheep that were prepared chronically. This permitted recordings to be made in the same animals either when they were awake and free from recent surgery, drugs, and training and only partially restrained or when they were anesthetized with halothane. 2. We recorded 261 units in dorsal and ventral horns under conscious conditions. Of these, 19% had no detectable receptive field (RF) and 44% had responses dominated by proprioceptive inputs; these units were not investigated in detail. The remaining 96 neurons (37%) had clearly defined cutaneous RFs. Of these, most (72%) had wide-dynamic-range (WDR; convergent, multireceptive) properties, 19% were low-threshold mechanoreceptive (LTMR), and 9% were high-threshold mechanoreceptive (HTMR). These units with cutaneous RFs were investigated in greater detail. 3. The spontaneous activity under these awake conditions was low (< 4 spikes/s) for nearly all units in all three categories. The mechanical threshold of the most sensitive (central) part of the cutaneous RF was assessed with von Frey bristles. Thresholds were < 5 mN for all LTMR neurons, < 1-30 mN for WDR neurons, and > 80 mN for HTMR neurons. The size of the low-threshold cutaneous RFs was significantly larger for WDR neurons (mean 46 cm2) and HTMR neurons (45 cm2) than for LTMR neurons (24 cm2). The RFs were distributed all over the ipsilateral hindlimb. Large RFs were mostly proximal, whereas small RFs were distributed relatively evenly over the limb. 4. Recordings were made from a further 165 units while the animals were under halothane anesthesia. With 86 neurons having cutaneous peripheral RFs, the proportions having LTMR, HTMR, or WDR characteristics were very similar to those in awake animals. Under halothane the ongoing activity of WDR units was slightly (but significantly) less. The threshold to von Frey bristle stimulation was significantly higher only for WDR units, in both dorsal and ventral horns. The mean size of cutaneous RFs was significantly larger in all classes of units recorded under halothane anesthesia. For WDR units this was true for cells in both dorsal and ventral horns. This effect on mean values was due to a larger proportion of units with very large fields under anesthesia, particularly in the dorsal horn. 5. Comparison of the data from conscious animals with published results of acute experiments indicates that acute recording conditions do not distort the relative distribution and resting characteristics of these three functional categories of lumbar spinal neurons as much as might have been expected. 6. Halothane does not have major effects on the resting sensory responsiveness of spinal neurons with cutaneous RFs. The increase in RF area, which contrasts with most results from acute studies, is likely to be due to a dampening of descending inhibitory control mechanisms.


Author(s):  
Mehdi Sadeghi ◽  
◽  
Homa Manaheji ◽  
Jalal Zaringhalam ◽  
Abbas Haghparast ◽  
...  

Introduction: The modality of γ-aminobutyric acid receptors (GABAA) in control of dorsal horn neuronal excitability and inhibition of sensory information is ambiguous. The aim of the present study was to investigate the expression of GABAA receptor and the effects of its agonist muscimol on wide dynamic range (WDR) neuronal activity in the chronic constriction injury (CCI) model of neuropathic pain. Methods: Adult male Wistar rats weighing 200 to 250 g were used for the induction of CCI neuropathy. 14 days after surgery, muscimol (0.5, 1, and 2 mg/kg i.p.) was injected. Then, the behavioral tests were performed. Thereafter, the animals were sacrificed, and the lumbar segments of the spinal cords were collected for Western blot analysis of the GABAA receptor α1 subunit expression. The electrophysiological properties of WDR neurons were studied by single unit recordings in separate groups on the 14th day after CCI. Results: The outcomes indicated the development of thermal hyperalgesia and mechanical allodynia after neuropathy; nonetheless, the expression of GABAA receptor α1 subunit did not change significantly. Moreover, the evoked responses of the WDR neurons to electrical, mechanical, and thermal stimuli were significantly increased. 14 days after CCI, muscimol administration decreased thermal hyperalgesia, mechanical allodynia, and hyper-responsiveness of the WDR neurons in CCI rats. Conclusion: It confirms that the modulation of the spinal GABAA receptors after nerve injury can offer further insights to design new therapeutic agents in order to reduce the neuropathic pain symptoms.


Sign in / Sign up

Export Citation Format

Share Document