scholarly journals Neocortex Network Activation and Deactivation States Controlled by the Thalamus

2010 ◽  
Vol 103 (3) ◽  
pp. 1147-1157 ◽  
Author(s):  
Akio Hirata ◽  
Manuel A. Castro-Alamancos

Neocortex network activity varies from a desynchronized or activated state typical of arousal to a synchronized or deactivated state typical of quiescence. Such changes are usually attributed to the effects of neuromodulators released in the neocortex by nonspecific activating systems originating in basal forebrain and brain stem reticular formation. As a result, the only role attributed to thalamocortical cells projecting to primary sensory areas, such as barrel cortex, is to transmit sensory information. However, thalamocortical cells can undergo significant changes in spontaneous tonic firing as a function of state, although the role of such variations is unknown. Here we show that the tonic firing level of thalamocortical cells, produced by cholinergic and noradrenergic stimulation of the somatosensory thalamus in urethane-anesthetized rats, controls neocortex activation and deactivation. Thus in addition to its well-known role in the relay of sensory information, the thalamus can control the state of neocortex activation, which may complement the established roles in this regard of basal forebrain and brain stem nuclei. Because of the topographical organization of primary thalamocortical pathways, this mechanism provides a means by which area-specific neocortical activation can occur, which may be useful for modality-specific sensory processing or selective attention.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2021 ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

Abstract The rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. L5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of L5a in the development of the barrel cortex remains unclear. Previously, we found that Calretinin is dynamically expressed in L5a. In this study, we analyzed Cr KO mice and found that the dendritic complexity and length of L5a pyramidal neurons were significantly decreased after Cr ablation. The membrane excitability and excitatory synaptic transmission of L5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, L4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Cr KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of L5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2011 ◽  
Vol 105 (4) ◽  
pp. 1495-1505 ◽  
Author(s):  
Akio Hirata ◽  
Manuel A. Castro-Alamancos

Neocortex network activity changes from a deactivated state during quiescence to an activated state during arousal and vigilance. In urethane-anesthetized rats, cortical activation is readily produced by either stimulating the brainstem reticular formation or by application of cholinergic agonists into the thalamus. We studied the effects of cortical activation on spontaneous activity and sensory responses in the barrel cortex. Cortical activation leads to a suppression of low-frequency sensory responses and to a reduction in their variability due to the abolishment of up and down membrane potential fluctuations in cortical cells. Overall, sensory responses become sharper and more reliable during cortical activation.


2020 ◽  
Author(s):  
D. LaTerra ◽  
S. Petryszyn ◽  
Marius Rosier ◽  
L.M. Palmer

ABSTRACTThe thalamus is the gateway to the cortex. Cortical encoding of sensory information can therefore only be understood by considering the influence of thalamic processing on sensory input. Despite modulating sensory processing, little is known about the role of the thalamus during sensory-based behavior, let alone goal-directed behavior. Here, we use two-photon Ca2+ imaging, patch-clamp electrophysiology and optogenetics to investigate the role of axonal projections from the posteromedial nucleus of the thalamus (POm) to the forepaw area of the primary somatosensory cortex (forepaw S1) during sensory processing and goal-directed behavior. We demonstrate that POm axons are active during tactile stimulus and increase activity specifically during the response and, to a lesser extent, reward epochs of a tactile goal-directed task. Furthermore, POm axons in forepaw S1 preferentially signaled correct behavior, with greatest activity during HIT responses. This activity is important for behavioral performance, as photoinhibition of archaerhodopsin-expressing neurons in the POm decreased overall behavioral success. Direct juxtacelluar recordings in the awake state illustrates POm neurons fire sustained action potentials during tactile stimulus. This tactile-evoked POm firing pattern was used during ChR2 photoactivation of POm axons in forepaw S1, revealing that action potentials in layer 2/3 (L2/3) pyramidal neurons are inhibited during sustained POm input. Taken together, POm axonal projections in forepaw S1 encode correct goal-directed active behavior, leading to GABAA-mediated inhibition of L2/3 pyramidal neurons.


Author(s):  
Erik Böhm ◽  
Daniela Brunert ◽  
Markus Rothermel

AbstractBasal forebrain modulation of central circuits is associated with active sensation, attention and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb lead to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor evoked firing is predominantly enhanced. Moreover, sniff triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.


2021 ◽  
Author(s):  
Liad J. Baruchin ◽  
Michael M. Kohl ◽  
Simon J.B Butt

AbstractMammalian neocortex is important for conscious processing of sensory information. Fundamental to this function is balanced glutamatergic and GABAergic signalling. Yet little is known about how this interaction arises in the developing forebrain despite increasing insight into early GABAergic interneuron (IN) circuits. To further study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex. Specifically we explored the role of INs in speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity, and showed refinement over the period leading to active whisking onset. We then conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked activity in an age and layer-dependent manner. Silencing SST+ INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP+ IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results reveal how these IN subtypes differentially contribute to early sensory processing over the first few postnatal weeks.


2014 ◽  
Vol 111 (4) ◽  
pp. 755-767 ◽  
Author(s):  
C. Bertram ◽  
L. Dahan ◽  
L. W. Boorman ◽  
S. Harris ◽  
N. Vautrelle ◽  
...  

Dopaminergic (DA) neurons respond to stimuli in a wide range of modalities, although the origin of the afferent sensory signals has only recently begun to emerge. In the case of vision, an important source of short-latency sensory information seems to be the midbrain superior colliculus (SC). However, longer-latency responses have been identified that are less compatible with the primitive perceptual capacities of the colliculus. Rather, they seem more in keeping with the processing capabilities of the cortex. Given that there are robust projections from the cortex to the SC, we examined whether cortical information could reach DA neurons via a relay in the colliculus. The somatosensory barrel cortex was stimulated electrically in the anesthetized rat with either single pulses or pulse trains. Although single pulses produced small phasic activations in the colliculus, they did not elicit responses in the majority of DA neurons. However, after disinhibitory intracollicular injections of the GABAA antagonist bicuculline, collicular responses were substantially enhanced and previously unresponsive DA neurons now exhibited phasic excitations or inhibitions. Pulse trains applied to the cortex led to phasic changes (excitations to inhibitions) in the activity of DA neurons at baseline. These were blocked or attenuated by intracollicular administration of the GABAA agonist muscimol. Taken together, the results indicate that the cortex can communicate with DA neurons via a relay in the SC. As a consequence, DA neuronal activity reflecting the unexpected occurrence of salient events and that signaling more complex stimulus properties may have a common origin.


2021 ◽  
Author(s):  
Liad J Baruchin ◽  
Filippo Ghezzi ◽  
Michael M Kohl ◽  
Simon J B Butt

Abstract Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.


2019 ◽  
Author(s):  
Alexia Bourgeois ◽  
Carole Guedj ◽  
Emmanuel Carrera ◽  
Patrik Vuilleumier

Selective attention is a fundamental cognitive function that guides behavior by selecting and prioritizing salient or relevant sensory information of our environment. Despite early evidence and theoretical proposal pointing to an implication of thalamic control in attention, most studies in the past two decades focused on cortical substrates, largely ignoring the contribution of subcortical regions as well as cortico-subcortical interactions. Here, we suggest a key role of the pulvinar in the selection of salient and relevant information via its involvement in priority maps computation. Prioritization may be achieved through a pulvinar- mediated generation of alpha oscillations, which may then modulate neuronal gain in thalamo-cortical circuits. Such mechanism might orchestrate the synchrony of cortico-cortical interaction, by rendering neural communication more effective, precise and selective. We propose that this theoretical framework will support a timely shift from the prevailing cortico- centric view of cognition to a more integrative perspective of thalamic contributions to attention and executive control processes.


Author(s):  
Bruno and

Multisensory interactions in perception are pervasive and fundamental, as we have documented throughout this book. In this final chapter, we propose that contemporary work on multisensory processing is a paradigm shift in perception science, calling for a radical reconsideration of empirical and theoretical questions within an entirely new perspective. In making our case, we emphasize that multisensory perception is the norm, not the exception, and we remark that multisensory interactions can occur early in sensory processing. We reiterate the key notions that multisensory interactions come in different kinds and that principles of multisensory processing must be considered when tackling multisensory daily-life problems. We discuss the role of unisensory processing in a multisensory world, and we conclude by suggesting future directions for the multisensory field.


Sign in / Sign up

Export Citation Format

Share Document