Spinal dorsal horn neurons responding to noxious distension of the ureter in anesthetized rats

1996 ◽  
Vol 76 (5) ◽  
pp. 3239-3248 ◽  
Author(s):  
J. M. Laird ◽  
C. Roza ◽  
F. Cervero

1. Stimulation of the ureter in humans evokes only painful sensations. A large proportion of ureteric afferents show high activation thresholds to ureter pressure increases and encode stimuli within the noxious range. However, little is known about how these properties are reflected in the central processing of ureteric information. In this study, dorsal horn neurons recorded in the left side of the T12-L1 spinal cord of anesthetized rats have been tested for responses to innocuous and noxious pressure stimuli applied to the ipsilateral ureter. 2. Single-unit recordings were made from 76 neurons with somatic receptive fields on the left flank, of which 57 were fully characterized and tested by raising the ureter pressure to 80 mmHg for 30 s. Of these 57 neurons, 24 (42%) were influenced by the ureter stimulus, as follows: 18 were excited, 2 were inhibited, and 4 showed changes in background activity and/or in somatic receptive field area, without a time-locked change in firing rate. The remaining 33 cells (58%) showed no changes in firing rate, background activity, somatic receptive field area, or input properties as a result of ureter stimulation. 3. Neurons responding to the 80-mmHg stimulus were further tested with a range of ureter pressures (5-100 mmHg). No responses were evoked by stimuli of < 20 mmHg, and responses observed were proportional to stimulus intensity. Excitatory responses showed a long onset latency (median = 23 s) and long afterdischarges (median = 145 s). 4. All neurons with ureter input had nociceptive somatic inputs. When compared with neurons without ureter input, cells with ureter input were more likely to show background activity (80 vs. 27%) and more likely to have bilateral somatic receptive fields (30 vs. 6%). Neurons with ureter input had higher rates of background activity and larger somatic receptive fields. Ureter stimulation also produced changes in the somatic receptive field area of neurons excited or inhibited by the stimulus, indicating a high degree of plasticity in the ureteric nociceptive pathway. 5. We conclude that the characteristics of the responses of dorsal horn neurons with ureter input to noxious and innocuous ureter stimulation indicate that they receive ureteric input mainly from high-threshold afferents, and that their response properties correlate well with ureteric pain sensation in humans.

2004 ◽  
Vol 92 (1) ◽  
pp. 320-326 ◽  
Author(s):  
Rui-Qing Sun ◽  
Nada B. Lawand ◽  
Qing Lin ◽  
William D. Willis

This study was designed to assess the role of calcitonin gene-related peptide (CGRP) and its receptor in the sensitization of dorsal horn neurons induced by intradermal injection of capsaicin in rats. Extracellular recordings were made from wide dynamic range (WDR) dorsal horn neurons with receptive fields on the hindpaw in the lumbar enlargement of anesthetized rats. The background activity and responses to brushing, pressing, and pinching the skin were assessed. A postsuperfusion or a presuperfusion of CGRP8-37 paradigm was followed. When tested 30 min after capsaicin injection, there was an increase in background activity and responses to brush, press, and pinch applied to the receptive field. Superfusion of CGRP8-37 into the spinal cord at 45 min after capsaicin injection significantly reversed the increased background activity and responses to brush, press, and pinch applied to the receptive field. On the other hand, spinal superfusion of CGRP8-37 prior to capsaicin injection prevented the increased background activity and responses to brush, press, and pinch of WDR neurons that occurred following capsaicin injection in control experiments. A sensitization of spinal dorsal horn neurons could also be induced by superfusion of the spinal cord with CGRP. The effect could be blocked by CGRP8-37 dose-dependently. Collectively, these results suggest that CGRP and its receptors are involved in the spinal cord central sensitization induced by intradermal injection of capsaicin.


1998 ◽  
Vol 80 (1) ◽  
pp. 120-129 ◽  
Author(s):  
Robert W. Dykes ◽  
A. D. Craig

Dykes, Robert W. and A. D. Craig. Control of size and excitability of mechanosensory receptive fields in dorsal column nuclei by homolateral dorsal horn neurons. J. Neurophysiol. 80: 120–129 1998. Both accidental and experimental lesions of the spinal cord suggest that neuronal processes occurring in the spinal cord modify the relay of information through the dorsal column-lemniscal pathway. How such interactions might occur has not been adequately explained. To address this issue, the receptive fields of mechanosensory neurons of the dorsal column nuclei were studied before and after manipulation of the spinal dorsal horn. After either a cervical or lumbar laminectomy and exposure of the dorsal column nuclei in anesthetized cats, the representation of the hindlimb or of the forelimb was defined by multiunit recordings in both the dorsal column nuclei and in the ipsilateral spinal cord. Next, a single cell was isolated in the dorsal column nuclei, and its receptive field carefully defined. Each cell could be activated by light mechanical stimuli from a well-defined cutaneous receptive field. Generally the adequate stimulus was movement of a few hairs or rapid skin indentation. Subsequently a pipette containing either lidocaine or cobalt chloride was lowered into the ipsilateral dorsal horn at the site in the somatosensory representation in the spinal cord corresponding to the receptive field of the neuron isolated in the dorsal column nuclei. Injection of several hundred nanoliters of either lidocaine or cobalt chloride into the dorsal horn produced an enlargement of the receptive field of the neuron being studied in the dorsal column nuclei. The experiment was repeated 16 times, and receptive field enlargements of 147–563% were observed in 15 cases. These data suggest that the dorsal horn exerts a tonic inhibitory control on the mechanosensory signals relayed through the dorsal column-lemniscal pathway. Because published data from other laboratories have shown that receptive field size is controlled by signals arising from the skin, we infer that the control of neuronal excitability, receptive field size and location for lemniscal neurons is determined by tonic afferent activity that is relayed through a synapse in the dorsal horn. This influence of dorsal horn neurons on the relay of mechanosensory information through the lemniscal pathways must modify our traditional views concerning the relative independence of these two systems.


1999 ◽  
Vol 91 (3) ◽  
pp. 772-772 ◽  
Author(s):  
Peter K. Zahn ◽  
Timothy J. Brennan

Background To learn more about pain mechanisms produced by surgery, responses of wide dynamic range (WDR) and high threshold (HT) dorsal horn neurons were studied before and after an incision. For this study, an incision was made in a mechanically insensitive area of the receptive field (RF) of the dorsal horn neuron in the plantar aspect of the foot and changes in mechanical response properties were studied. Methods Action potentials from single dorsal horn neurons were recorded in halothane anesthetized rats and these neurons were characterized as WDR or HT. Changes in background activity and responses to a variety of mechanical stimuli adjacent to the incision, distant to the injury, and in areas throughout the hindquarters were recorded. Results Fifty neurons were recorded (29 WDR, 21 HT cells); only nine of these had a sustained increase in background activity after incision. Marked decreases in threshold to von Frey filaments applied adjacent to the wound occurred in 9 of 28 WDR neurons but in none of 21 HT cells. Von Frey filament thresholds distant to the incision were largely not changed. A blunt mechanical stimulus activated 18 of 22 WDR neurons when applied directly on the incision. HT cells were largely not excited by this mechanical stimulus after incision. The RF to pinch was enlarged in 31 neurons to include areas outside the injury. Pinch RFs of both WDR and HT cells expanded. Conclusion These results suggest that incisions in mechanically insensitive areas of the RF of dorsal horn neurons produced little change in background activity; expansion of pinch RFs outside the injury was common. Changing a mechanically insensitive area of the RF of WDR neurons to a mechanically sensitive area by an incision could contribute to pain behaviors that indicate primary mechanical hyperalgesia in behavioral studies.


1998 ◽  
Vol 79 (4) ◽  
pp. 1613-1618 ◽  
Author(s):  
Steven L. Jinks ◽  
E. Carstens

Jinks, Steven L. and E. Carstens. Spinal NMDA receptor involvement in expansion of dorsal horn neuronal receptive field area produced by intracutaneous histamine. J. Neurophysiol. 79: 1613–1618, 1998. Histamine elicits the sensation of itch at the site of skin application as well as alloknesis (itch elicited by innocuous mechanical stimuli) in a surrounding area in humans and expansion of the low-threshold mechanosensitive receptive field area of spinal wide dynamic range (WDR)-type dorsal horn neurons in rats. We presently tested if the histamine-evoked expansion of neuronal receptive field area depends on a spinal N-methyl-d-aspartate (NMDA) receptor-mediated process. In pentobarbital sodium–anesthetized rats, mechanical receptive field areas of single WDR-type dorsal horn neurons were mapped with graded von Frey filaments before and 10 min after intracutaneous (ic) microinjection of histamine (1 μl; 1, 3, or 10%) at a low-threshold site within the receptive field. Intracutaneous microinjection of histamine evoked dose-related increases in firing rate, as well as a dose-dependent expansion in mean receptive field area 10 min after 3 and 10%, but not 1%, histamine doses. When a noncompetitive or competitive NMDA receptor antagonist dizocilpine [MK-801; d(-)-2-amino-5-phosphonovalerate (APV), respectively; 1 μM] was first applied topically to the surface of the spinal cord, there was no significant change in mean receptive field area after ic microinjection of 10% histamine. The mean neuronal response to histamine in the presence of spinal MK-801 or APV was not significantly different from the mean response to histamine in the absence of these drugs. These results suggest that spinal NMDA receptors are involved in histamine-induced expansion of mechanical receptive field area, a neural event possibly involved in the development of alloknesis.


2008 ◽  
Vol 99 (6) ◽  
pp. 3144-3150 ◽  
Author(s):  
Rachel A. Ingram ◽  
Maria Fitzgerald ◽  
Mark L. Baccei

The lower thresholds and increased excitability of dorsal horn neurons in the neonatal rat suggest that inhibitory processing is less efficient in the immature spinal cord. This is unlikely to be explained by an absence of functional GABAergic inhibition because antagonism of γ-aminobutyric acid (GABA) type A receptors augments neuronal firing in vivo from the first days of life. However, it is possible that more subtle deficits in GABAergic signaling exist in the neonate, such as decreased reliability of transmission or greater depression during repetitive stimulation, both of which could influence the relative excitability of the immature spinal cord. To address this issue we examined monosynaptic GABAergic inputs onto superficial dorsal horn neurons using whole cell patch-clamp recordings made in spinal cord slices at a range of postnatal ages (P3, P10, and P21). The amplitudes of evoked inhibitory postsynaptic currents (IPSCs) were significantly lower and showed greater variability in younger animals, suggesting a lower fidelity of GABAergic signaling at early postnatal ages. Paired-pulse ratios were similar throughout the postnatal period, whereas trains of stimuli (1, 5, 10, and 20 Hz) revealed frequency-dependent short-term depression (STD) of IPSCs at all ages. Although the magnitude of STD did not differ between ages, the recovery from depression was significantly slower at immature GABAergic synapses. These properties may affect the integration of synaptic inputs within developing superficial dorsal horn neurons and thus contribute to their larger receptive fields and enhanced afterdischarge.


2003 ◽  
Vol 90 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Yuan Bo Peng ◽  
Qing Dong Ling ◽  
M. A. Ruda ◽  
Daniel R. Kenshalo

Neonatal peripheral inflammation has been shown to produce profound anatomical changes in the dorsal horn of adult rats. In this study, we explored whether parallel physiological changes exist. Neonatal rats were injected with complete Freund's adjuvant (CFA) into the left hind paw. At 8–10 wk of age, single dorsal horn neurons were recorded in response to graded intensities of mechanical stimuli delivered to the receptive field. In addition, cord dorsum potentials, produced by electrical stimuli delivered to the left sciatic nerve at 2.5× threshold, were recorded bilaterally from L2 to S3. There were significant increases in background activity and responses to brush and pinch in neonatal rats that were treated with CFA, as compared with control rats. Further analysis showed similar significant changes when dorsal horn neurons were categorized into wide dynamic range (WDR), high-threshold (HT), and low-threshold (LT) groups. The receptive field was significantly larger in neonatally treated rats as compared with control rats. Additionally, there was a significant increase in the response to a 49°C heat stimulus in neonatally treated rats as compared with control rats. There was also a trend for the amplitudes of N1, N2, and P waves of the cord dorsum potential to increase and latencies to decrease in neonatally treated rats, but no significant differences were detected between different levels of the spinal cord (L2 to S3). These data further support the notion that anatomical and physiological plasticity changes occurred in the spinal cord following early neonatal CFA treatment.


1989 ◽  
Vol 62 (4) ◽  
pp. 854-863 ◽  
Author(s):  
J. M. Laird ◽  
F. Cervero

1. Single-unit electrical activity has been recorded from 42 dorsal horn neurons in the sacral segments of the rat's spinal cord. The sample consisted of 20 multireceptive (class 2) cells with both A- and C-fiber inputs and 22 nocireceptive (class 3) cells. All neurons had cutaneous receptive fields (RFs) on the tail. 2. The RF sizes of the cells and their response thresholds to mechanical stimulation of the skin were determined before and after each of a series of 2-min noxious mechanical stimuli. Up to five such stimuli were delivered at intervals ranging from 10 to 60 min. In most cases, only one cell per animal was tested. 3. The majority of neurons were tested in barbiturate-anesthetized animals. However, to test whether or not this anesthetic influenced the results obtained, experiments were also performed in halothane-anesthetized and decerebrate-spinal preparations. The results from these experiments are considered separately. 4. All of the neurons responded vigorously to the first noxious pinch stimulus and all but one to the rest of the stimuli in the series. The responses of the neurons varied from stimulus to stimulus, but there were no detectable trends in the two groups of cells. 5. The RFs of the class 2 cells showed large increases (624.3 +/- 175.8 mm2, mean +/- SE) after the application of the pinch stimuli. The RFs of the class 3 neurons, which were initially smaller than those of the class 2 cells, either did not increase in size or showed very small increases after the pinch stimuli (38.3 +/- 11.95 mm2, mean +/- SE). 6. Some cells in both groups (6/10 class 2 cells and 7/16 class 3 cells) showed a decrease in mechanical threshold as a result of the noxious mechanical stimulus, but none of the class 3 cells' thresholds dropped below 20 mN into the low-threshold range. 7. The results obtained in the halothane-anesthetized and decerebrate-spinal animals were very similar to those seen in the barbiturate-anesthetized experiments, with the exception that in the decerebrate-spinal animals, the RFs of the class 2 cells were initially larger and showed only small increases.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document