scholarly journals Identification and Analysis of Novel Amino-Acid Sequence Repeats inBacillus anthracisstr.AmesProteome Using Computational Tools

2007 ◽  
Vol 2007 ◽  
pp. 1-23 ◽  
Author(s):  
G. R. Hemalatha ◽  
D. Satyanarayana Rao ◽  
L. Guruprasad

We have identified four repeats and ten domains that are novel in proteins encoded by theBacillus anthracisstr.Amesproteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure.

2001 ◽  
Vol 2 (4) ◽  
pp. 226-235 ◽  
Author(s):  
Amanda Cottage ◽  
Yvonne J. K. Edwards ◽  
Greg Elgar

As a result of genome, EST and cDNA sequencing projects, there are huge numbers of predicted and/or partially characterised protein sequences compared with a relatively small number of proteins with experimentally determined function and structure. Thus, there is a considerable attention focused on the accurate prediction of gene function and structure from sequence by using bioinformatics. In the course of our analysis of genomic sequence fromFugu rubripes, we identified a novel gene,SAND, with significant sequence identity to hypothetical proteins predicted inSaccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, aDrosophila melanogastergene, and mouse and human cDNAs. Here we identify a furtherSANDhomologue in human andArabidopsis thalianaby use of standard computational tools. We describe the genomic organisation ofSANDin these evolutionarily divergent species and identify sequence homologues from EST database searches confirming the expression of SAND in over 20 different eukaryotes. We confirm the expression of two different SAND paralogues in mammals and determine expression of one SAND in other vertebrates and eukaryotes. Furthermore, we predict structural properties of SAND, and characterise conserved sequence motifs in this protein family.


2004 ◽  
Vol 5 (1) ◽  
pp. 2-16 ◽  
Author(s):  
S. Adindla ◽  
K. K. Inampudi ◽  
K. Guruprasad ◽  
L. Guruprasad

We have identified four novel repeats and two domains in cell surface proteins encoded by theMethanosarcina acetivoransgenome and in some archaeal and bacterial genomes. The repeats correspond to a certain number of amino acid residues present in tandem in a protein sequence and each repeat is characterized by conserved sequence motifs. These correspond to: (a) a 42 amino acid (aa) residue RIVW repeat; (b) a 45 aa residue LGxL repeat; (c) a 42 aa residue LVIVD repeat; and (d) a 54 aa residue LGFP repeat. The domains correspond to a certain number of aa residues in a protein sequence that do not comprise internal repeats. These correspond to: (a) a 200 aa residue DNRLRE domain; and (b) a 70 aa residue PEGA domain. We discuss the occurrence of these repeats and domains in the different proteins and genomes analysed in this work.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21629-21641
Author(s):  
Chao Xia ◽  
Pingping Wen ◽  
Yaming Yuan ◽  
Xiaofan Yu ◽  
Yijing Chen ◽  
...  

The relative number of peptides modified by the amino acid residues of actin from raw beef patties and those cooked at different roasting temperatures.


Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1039-1044 ◽  
Author(s):  
I J Fijalkowska ◽  
R M Schaaper

Abstract The dnaE gene of Escherichia coli encodes the DNA polymerase (alpha subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.


1998 ◽  
Vol 7 (7) ◽  
pp. 1647-1652 ◽  
Author(s):  
Maria Cristina Thaller ◽  
Serena Schippa ◽  
Gian Maria Rossolini

1996 ◽  
Vol 13 (1) ◽  
pp. 150-169 ◽  
Author(s):  
R. E. Hickson ◽  
C. Simon ◽  
A. Cooper ◽  
G. S. Spicer ◽  
J. Sullivan ◽  
...  

Synthesis ◽  
2019 ◽  
Vol 51 (05) ◽  
pp. 1273-1283 ◽  
Author(s):  
Simon Baldauf ◽  
Jeffrey Bode

The α-ketoacid–hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. The most widely used variant employs a 5-membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. While very effective, monomers that give canonical amino acid residues are in high demand. In order to preserve the stability and reactivity of cyclic hydroxylamines, but form a canonical amino acid residue upon ligation, we sought to prepare cyclic derivatives of serine hydroxylamine. An evaluation of several cyclization strategies led to cyclobutanone ketals as the leading structures. The preparation, stability, and amide-forming ligation of these serine-derived ketals are described.


1997 ◽  
Vol 323 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Lakshmi KASTURI ◽  
Hegang CHEN ◽  
Susan H. SHAKIN-ESHLEMAN

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa = Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa = Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.


2006 ◽  
Vol 87 (10) ◽  
pp. 3087-3095 ◽  
Author(s):  
Anna D. Leshchiner ◽  
Andrey G. Solovyev ◽  
Sergey Yu. Morozov ◽  
Natalia O. Kalinina

The TGBp1 protein, encoded in the genomes of a number of plant virus genera as the first gene of the ‘triple gene block’, possesses an NTPase/helicase domain characterized by seven conserved sequence motifs. It has been shown that the TGBp1 NTPase/helicase domain exhibits NTPase, RNA helicase and RNA-binding activities. In this paper, we have analysed a series of deletion and point mutants in the TGBp1 proteins encoded by Potato virus X (PVX, genus Potexvirus) and Poa semilatent virus (PSLV, genus Hordeivirus) to map functional regions responsible for their biochemical activities in vitro. It was found that, in both PVX and PSLV, the N-terminal part of the TGBp1 NTPase/helicase domain comprising conserved motifs I, Ia and II was sufficient for ATP hydrolysis, RNA binding and homologous protein–protein interactions. Point mutations in a single conserved basic amino acid residue upstream of motif I had little effect on the activities of C-terminally truncated mutants of both TGBp1 proteins. However, when introduced into the full-length NTPase/helicase domains, these mutations caused a substantial decrease in the ATPase activity of the protein, suggesting that the conserved basic amino acid residue upstream of motif I was required to maintain a reaction-competent conformation of the TGBp1 ATPase active site.


Sign in / Sign up

Export Citation Format

Share Document