scholarly journals Environmental Impacts ofJatropha curcasBiodiesel in India

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Simon Gmünder ◽  
Reena Singh ◽  
Stephan Pfister ◽  
Alok Adheloya ◽  
Rainer Zah

In the context of energy security, rural development and climate change, India actively promotes the cultivation ofJatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of differentJatropha curcascultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the wholeJatropha curcasbiodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use ofJatropha curcasbiodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact ofJatropha curcasbiodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of theJatropha curcasplantations.

2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 380-385 ◽  
Author(s):  
Soraya Marx Bamberg ◽  
Silvio Junio Ramos ◽  
Marco Aurelio Carbone Carneiro ◽  
José Oswaldo Siqueira

Fertilizer application can enhance the nutritional value of plants, such effects being influenced by the presence of arbuscular mycorrhizal fungi (AMF). Nutrients × AMF interactions are well-known for variety of elements but very little has been addressed on biofortification of selenium (Se) in plants grown in tropical soils. The purpose of this study was to evaluate the effect of Se application and AMF inoculation on growth and micronutrient contents on soybean plants as forage grass. The experiments were conducted in a completely randomized factorial design with five Se doses (0.0, 0.5, 1.0, 2.0 and 3.0 mg kg-1 for soybean plants, and 0.0, 0.5, 1.0, 3.0 and 6.0 mg kg-1 for forage plants), with and without AMF inoculation in three replicates. The results showed that soil Se had only slight effect on soybean growth but it caused a two-fold increase on grain yield. However, the growth of forage grass was enhanced by Se application when AMF was present. The AMF inoculation reduced benefit for soybean growth and yield but marked positive effect on forage grass at high doses of Se. Selenium contents in both plants were increased by its application in soil, being such effect proportional to soil applied doses. Selenium application and AMF inoculation had marked effects on micronutrients contents in both soybean plants and forage grass and they may contribute to Se and micronutrient biofortification.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Maria Viva Rini ◽  
Fitri Yelli ◽  
Darwin Leonardo Tambunan ◽  
Inggar Damayanti

Abstract. Rini MV, Yelli F, Tambunan DL, Damayanti I. 2021. Morphological and molecular identifications of three native arbuscular mycorrhizal fungi isolated from the rhizosphere of Elaeis guineensis and Jatropha curcas in Indonesia. Biodiversitas 22: 4940-4947. Molecular analysis has been widely used to provide more accurate identification within arbuscular mycorrhizal fungi (AMF) species than identification based on morphology. However, morphological analysis is essential for a basic preliminary of classification studies. Therefore, a study is needed to complete the identification of AMF isolates through morphological and molecular analyses. This research used three AMF isolates, namely MV 5, MV 17, and MV 18, which were isolated from Indonesian agricultural land. Spore-based taxonomy (shape, size, color, ornamentation, PVLG, and Melzer’s reaction) and fungal colonization on roots of maize trap plants were employed for the morphological studies. AMF species identification was performed using molecular analysis through nested-Polymerase Chain Reaction (PCR) to amplify a fragment of SSU rRNA followed by sequencing and phylogenetic tree construction. Morphological analysis showed that MV 5 had spores borne from the neck of the sporiferous saccule, MV 17 was found to have a bulbous suspensor without a germination shield, and MV 18 had spores borne from subtending hyphae. The SSUR rRNA analysis revealed that MV 5, MV 15, and MV 18 were identified as Acaulospora longula, Gigaspora margarita, and Glomus etunicatum, respectively. Both morphological and molecular methods demonstrated reliable and consistent results that complement AMF taxonomy studies.


2015 ◽  
Vol 9 (15) ◽  
pp. 1060-1074 ◽  
Author(s):  
Coutinho Moreira Bruno ◽  
Lucia Rodrigues Ana ◽  
Feliciano Oliveira Sabrina ◽  
Sergio Balbino Miguel Paulo ◽  
Mara Soares Bazzolli Denise ◽  
...  

2021 ◽  
Author(s):  
Ke Chen ◽  
David Kleijn ◽  
Jeroen Scheper ◽  
Thijs P.M. Fijen

AbstractManaging ecosystem services may reduce the dependence of modern agriculture on external inputs and increase the sustainability of agricultural production. Insect pollinators and arbuscular mycorrhizal fungi (AMF) provide vital ecosystem services for crop production, but it has not been tested whether their effects on crop yield interact and how their effects are influenced by nutrient availability. Here we use potted raspberry (Rubus idaeus L.) plants in a full-factorial randomized block design to assess the interacting effects of insect pollination, AMF inoculation and four levels of fertilizer application. AMF inoculation increased the per-plant flower number by 33% and fruit number by 35%, independently from insect pollination and fertilizer application. Single berry weight furthermore increased more strongly with fertilizer application rates in AMF inoculated plants than in non-inoculated plants. As a consequence, AMF inoculation boosted raspberry yield by 43% compared to non-inoculated plants. AMF inoculation increased pollinator visitation rate under intermediate fertilizer levels, suggesting additional indirect effects of AMF on yield. Fruit yield of pollinated plants increased more strongly with fertilizer application rate than the yield of plants from which pollinators had been excluded. At maximum nutrient availability, the combined benefits of both ecosystem services resulted in a 135% higher yield than that of fertilizer-only treatments. Our results suggest that benefits of ecosystem services on yield can be additive or synergistic to the effects of conventional management practices. Intensive, high-input farming systems that do not consider the potential adverse effects of management on ecosystem service providing species may risk becoming limited by delivery of ecosystem services. Pro-actively managing ecosystem services, on the other hand, has the potential to increase crop yield at the same level of external inputs.


2020 ◽  
Vol 12 (24) ◽  
pp. 10602
Author(s):  
Huilong Lin ◽  
Yanfei Pu ◽  
Xueni Ma ◽  
Yue Wang ◽  
Charles Nyandwi ◽  
...  

“Introducing grass into fields”, the major approach to modern grassland agriculture, is the crucial direction of agricultural structure adjustment in the farming-pastoral zone of Northern China. However, there have been few studies on the environmental impacts of agricultural production in this pattern. We used the life cycle assessment (LCA) method for the first time from the perspective of the entire industry chain from agricultural material production to livestock marketing, which involves the combination of planting and breeding. A comparative analysis of the environmental impact processes of beef and pork, the main products of the two existing agricultural systems in Eastern Gansu, was conducted. The findings showed that based on the production capacity of the 1 ha land system, the comprehensive environmental impact benefit of the grassland agricultural system (GAS) in the farming-pastoral zone was 21.82%, higher than that of the cultivated land agricultural system (CLAS). On Primary energy demand (PED) and environmental acidification potential (AP), the GAS needs improvement because those values were 38.66% and 22.01% higher than those of the CLAS, respectively; on global warming potential (GWP), eutrophication potential (EP), and water use (WU), the GAS performed more environment-friendlily because those values were 25.00%, 68.37%, and 11.88% lower than those of the CLAS, respectively. This indicates that a change in land use will lead to a change in environmental impacts. Therefore, PED and AP should be focused on the progress of grassland agriculture modernization by “introducing grass into fields” and new agricultural technologies.


2018 ◽  
Vol 19 (2) ◽  
pp. 651-655
Author(s):  
WIWIK EKYASTUTI ◽  
HANNA ARTUTI EKAMAWANTI

Ekyastuti W, Ekamawanti HA. 2018. Short Communication: The role of microbial rhizosphere in enhancing plant growth of Jatropha curcas in soil contaminated mercury. Biodiversitas 19: 651-655. Soil in the area of ex-gold mining, has the chemical-physical constraints to the growth of plants. These chemical-physical constraints are low organic matter, poor of nutrient, acid pH, very low CEC, soil texture dominated by sand, and mercury contamination. This area needs to be rehabilitated. Previous research has found that Jatropha curcas as a plant tolerant to mercury. On the other hand, some types of microbial rhizosphere such as arbuscular mycorrhizal fungi (AMF) and mercury reducing bacteria (MRB) also have an ability to reduce mercury. The purpose of this study was to determine the role of microbial components of AMF and MRB in enhancing the growth of J. curcas in tailings contaminated mercury. The study was conducted in two places, in the greenhouse and in the tailing area of ex-gold mining, using factorial completely randomized design. Results showed that interactions between AMF and MRB were simultaneously able to enhance the growth of J. curcas not only in the greenhouse, but also in the field (tailing area). In the greenhouse (nursery), several isolates of Bacillus sp, Bacillus sp + Glomus SS11 and Bacillus sp + Glomus SS18 in the forms of inoculum were very effective in enhancing the seedling growth of J. curcas. However, results were apparently changed after those seedlings were planted in the field (tailings of ex-gold mining). The combination of Bacillus sp. + Glomus SS18 was the best treatment to enhance the growth of J. curcas of all used treatments. This result proves that the role of microbial rhizosphere, especially AMF and MRB, could effectively enhance the growth of J. curcas in tailings contaminated with mercury.


Resources ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 104
Author(s):  
Valeria Superti ◽  
Tim V. Forman ◽  
Cynthia Houmani

The limits to linear models of production based on material extraction, manufacture, use, and disposal are becoming increasingly apparent across the global economy. The Circular Economy (CE) describes an alternative to this problematic “take-make-waste” linear model that is concerned with resource efficiency and waste minimization. The construction and demolition sector represents an important focus for a CE transition due to its significant environmental impact. The use of thermal insulation to reduce energy demand associated with heating and cooling in buildings is vital for reducing the sector’s high environmental impact; however, there are significant challenges to recycling thermal insulation materials (IM). This study examines these challenges in the context of Switzerland and evaluates the potential for more circular management of expanded polystyrene and stonewool IM. The research provides an original analysis of the Swiss IM value chain in the context of the CE agenda based on a literature review, semi-structured interviews, and a workshop. Research gaps are highlighted based on scientific literature. The roles and agency of actors involved in the Swiss IM value chain are examined. Enablers of and barriers to wider IM recycling as reported by workshop participants are outlined. Interventions for tackling the current challenges faced for the recycling of thermal IM are suggested. Finally, an agenda for future research is proposed. Throughout the discussion, the importance of the involvement, commitment, and collaboration of stakeholders across the entire IM value chain for an effective and expedient transition to a CE is highlighted.


2017 ◽  
Vol 29 (3) ◽  
pp. 129-142 ◽  
Author(s):  
Dilliani Felipe Barros de Oliveira ◽  
Lauricio Endres ◽  
José Vieira Silva ◽  
Paulo Ricardo Aprígio Clemente

Sign in / Sign up

Export Citation Format

Share Document