scholarly journals Role of Estrogen Receptor Signaling in Breast Cancer Metastasis

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sudipa Saha Roy ◽  
Ratna K. Vadlamudi

Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis.

2021 ◽  
Vol 118 (44) ◽  
pp. e2114258118
Author(s):  
Takahiro Masaki ◽  
Makoto Habara ◽  
Yuki Sato ◽  
Takahiro Goshima ◽  
Keisuke Maeda ◽  
...  

Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118. Finally, the expression of the calcineurin A–α gene (PPP3CA) was associated with poor prognosis in ER-α–positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α–positive breast cancer.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1314
Author(s):  
Sylwia Lewoniewska ◽  
Ilona Oscilowska ◽  
Antonella Forlino ◽  
Jerzy Palka

It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells.


2020 ◽  
Vol 21 (23) ◽  
pp. 9227
Author(s):  
Nam Ji Sung ◽  
Na Hui Kim ◽  
Young-Joon Surh ◽  
Sin-Aye Park

Gremlin-1 (GREM1), one of the bone morphogenetic protein (BMP) antagonists, can directly bind to BMPs. GREM1 is involved in organogenesis, tissue differentiation, and organ fibrosis. Recently, numerous studies have reported the oncogenic role of GREM1 in cancer. However, the role of GREM1 in metastasis of breast cancer cells and its underlying mechanisms remain poorly understood. The role of GREM1 in breast cancer progression was assessed by measuring growth, migration, and invasion of breast cancer cells. An orthotopic breast cancer mouse model was used to investigate the role of GREM1 in lung metastasis of breast cancer cells. GREM1 knockdown suppressed the proliferation of breast cancer cells, while its overexpression increased their growth, migration, and invasion. Cells with Grem1-knockdown showed much lower tumor growth rates and lung metastasis than control cells. GREM1 enhanced the expression of matrix metalloproteinase 13 (MMP13). A positive correlation between GREM1 and MMP13 expression was observed in breast cancer patients. GREM1 activated signal transducer and activator of transcription 3 (STAT3) transcription factor involved in the expression of MMP13. Our study suggests that GREM1 can promote lung metastasis of breast cancer cells through the STAT3-MMP13 pathway. In addition, GREM1 might be a promising therapeutic target for breast cancer metastasis.


2020 ◽  
Author(s):  
Xiangshu Jin ◽  
Yafang Liu ◽  
Huinan Qu ◽  
Da Qi ◽  
Xinqi Wang ◽  
...  

Abstract Background: Metastatic breast cancer is the major cause of death in breast cancer patients. Activation of epithelial-mesenchymal transition (EMT) induces migration and invasion of breast cancer cells (BCCs). OCT4 (POU5F1) is a key transcription factor for reprograming and plays an important role in self-renewal. Recent studies recovered OCT4 may correlate with cancer progression. However, it is no sufficient proofs to verify how OCT4 plays in metastasis of breast cancer. In this present study, we show the role of OCT4 in the migration and invasion of BCCs in vitro and metastasis in vivo.Methods: PCR, Western Blot and Immunofluorescence staining were performed to determine to OCT4 expression in BCCs. Wound-healing assay and invasion assay were utilized to analyze the mobility of BCCs. Tumor metastasis was assessed with nude mice by subcutaneously injection. IHC assay was used to evaluate phosphorylated signal transducer and activator of transcription 3 (p-STAT3) expression in breast cancer tissues and normal breast tissues. To study whether OCT4 regulate EMT through STAT3 signal, we used shRNA to knockdown STAT3 gene expression in BCCs.Results: OCT4 changed cell morphology of BCCs, decreased cell adhesion, and inhibited migration, invasion and metastatic ability of BCCs. In the meantime, overexpression of OCT4 activated STAT3 signaling and changed EMT-related protein expressions in BCCs. However, knockdown of STAT3 in BCCs with overexpression of OCT4 could facilitate EMT.Conclusion: Our data demonstrate that OCT4 suppresses EMT in BCCs through activation of STAT3 signaling, which is a key mechanism in impeding BCCs migration and invasion. Collectively, these data suggest that elevating OCT4 expression may be an effective method for reducing the metastatic potential of BCCs, which could also contribute to developing new methods for diagnosis and new molecular target therapies in breast cancer metastasis.


Bone Research ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Haemin Kim ◽  
Bongjun Kim ◽  
Sang Il Kim ◽  
Hyung Joon Kim ◽  
Brian Y. Ryu ◽  
...  

Abstract Bone destruction induced by breast cancer metastasis causes severe complications, including death, in breast cancer patients. Communication between cancer cells and skeletal cells in metastatic bone microenvironments is a principal element that drives tumor progression and osteolysis. Tumor-derived factors play fundamental roles in this form of communication. To identify soluble factors released from cancer cells in bone metastasis, we established a highly bone-metastatic subline of MDA-MB-231 breast cancer cells. This subline (mtMDA) showed a markedly elevated ability to secrete S100A4 protein, which directly stimulated osteoclast formation via surface receptor RAGE. Recombinant S100A4 stimulated osteoclastogenesis in vitro and bone loss in vivo. Conditioned medium from mtMDA cells in which S100A4 was knocked down had a reduced ability to stimulate osteoclasts. Furthermore, the S100A4 knockdown cells elicited less bone destruction in mice than the control knockdown cells. In addition, administration of an anti-S100A4 monoclonal antibody (mAb) that we developed attenuated the stimulation of osteoclastogenesis and bone loss by mtMDA in mice. Taken together, our results suggest that S100A4 released from breast cancer cells is an important player in the osteolysis caused by breast cancer bone metastasis.


Nano LIFE ◽  
2012 ◽  
Vol 02 (03) ◽  
pp. 1241009 ◽  
Author(s):  
AMITA DAVEREY ◽  
AUSTIN C. MYTTY ◽  
SRIVATSAN KIDAMBI

This article demonstrates that the surface micro-topography regulates the biology of breast cancer cells, including the expression of HER-2 gene and protein. The breast tumor microenvironment is made up of heterogenous mixture of pores, ridges and collagen fibers with well defined topographical features. Although, significant progress has been achieved towards elucidating the biochemical and molecular mechanisms that underlie breast cancer progression, quantitative characterization of the associated mechanical/topographical properties and their role in breast tumor progression remains largely unexplored. Therefore, the aim of this study is to investigate the effect of topography on the adhesion and biology of breast cancer cells in in vitro cultures. Polydimethylsiloxane (PDMS) surfaces containing different topographies were coated with polyelectrolyte multilayers (PEMs) to improve cell adhesion and maintain cell culture. HER-2 expressing breast cancer cells, BT-474 and SKBr3, were cultured on these PDMS surfaces. We demonstrate that micro-topography affects the cell adhesion and distribution depending on the topography on the PDMS surfaces. We also report for the first time that surface topography down-regulates the HER-2 gene transcription and protein expression in breast cancer cells when cultured on PDMS surfaces with micro-topographies compared to the tissue culture polystyrene surface (TCPS) control. Results from this study indicate that micro-topography modulates morphology of cells, their distribution and expression of HER-2 gene and protein in breast cancer cells. This study provides a novel platform for studying the role of native topography in the progression of breast cancer and has immense potential for understanding the breast cancer biology.


Sign in / Sign up

Export Citation Format

Share Document