scholarly journals Inverse Projective Synchronization between Two Different Hyperchaotic Systems with Fractional Order

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Chai ◽  
Liping Chen ◽  
Ranchao Wu

This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350195 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve the generalized synchronization between two different fractional-order chaotic systems. Based on the stability theory of fractional-order systems and the pole placement technique, a controller is designed and theoretical proof is given. Two groups of examples are shown to verify the effectiveness of the proposed scheme, the first one is to realize the generalized synchronization between the fractional-order Chen system and the fractional-order Rössler system, the second one is between the fractional-order Lü system and the fractional-order hyperchaotic Lorenz system. The corresponding numerical simulations verify the effectiveness of the proposed scheme.



2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Liping Chen ◽  
Shanbi Wei ◽  
Yi Chai ◽  
Ranchao Wu

Projective synchronization between two different fractional-order chaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the stability theory of fractional-order differential equations, a suitable and effective adaptive control law and a parameter update rule for unknown parameters are designed, such that projective synchronization between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.



2014 ◽  
Vol 568-570 ◽  
pp. 1095-1099
Author(s):  
Si Yan Tao ◽  
Da Lin ◽  
Xiao Hui Zeng

In this paper, the generalized projective synchronization for a general class of hyperchaotic systems is investigated. A systematic, powerful and concrete scheme is developed to investigate the generalized projective synchronization between the drive system and response system based on the feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes.



2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zhouchao Wei

Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.



2012 ◽  
Vol 26 (30) ◽  
pp. 1250176 ◽  
Author(s):  
XING-YUAN WANG ◽  
ZUN-WEN HU

Based on the stability theory of fractional order systems and the pole placement technique, this paper designs a synchronization scheme with the state observer method and achieves the projective synchronization of a class of fractional order chaotic systems. Taking an example for the fractional order unified system by using this observer controller, and numerical simulations of fractional order Lorenz-like system, fractional order Lü system and fractional order Chen system are provided to demonstrate the effectiveness of the proposed scheme.



2009 ◽  
Vol 23 (17) ◽  
pp. 2167-2178 ◽  
Author(s):  
TIANSHU WANG ◽  
XINGYUAN WANG

In this paper, a type of new fractional order hyperchaotic Lorenz system is proposed. Based on the fractional calculus predictor-corrector algorithm, the fractional order hyperchaotic Lorenz system is investigated numerically, and the simulation results show that the lowest orders for hyperchaos in hyperchaotic Lorenz system is 3.884. According to the stability theory of fractional order system, an improved state-observer is designed, and the response system of generalized synchronization is obtained analytically, whose feasibility is proved theoretically. The synchronization method is adopted to realize the generalized synchronization of 3.884-order hyperchaotic Lorenz system, and the numerical simulation results verify the effectiveness.



2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
M. M. El-Dessoky ◽  
E. Saleh

Projective synchronization and generalized projective synchronization have recently been observed in the coupled hyperchaotic systems. In this paper a generalized projective synchronization technique is applied in the hyperchaotic Lorenz system and the hyperchaotic Lü. The sufficient conditions for achieving projective synchronization of two different hyperchaotic systems are derived. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.



2014 ◽  
Vol 721 ◽  
pp. 269-272
Author(s):  
Fan Di Zhang

This paper propose fractional-order Lu complex system. Moreover, projective synchronization control of the fractional-order hyper-chaotic complex Lu system is studied based on feedback technique and the stability theorem of fractional-order systems, the scheme of anti-synchronization for the fractional-order hyper-chaotic complex Lu system is presented. Numerical simulations on examples are presented to show the effectiveness of the proposed control strategy.



2014 ◽  
Vol 687-691 ◽  
pp. 2458-2461
Author(s):  
Feng Ling Jia

This paper investigates the projective synchronization of drive-response complex dynamical networks. Based on the stability theory for fractional-order differential equations, controllers are designed torealize the projective synchronization for complex dynamical networks. Morover, some simple synchronization conditions are proposed. Numerical simulations are presented to show the effectiveness of the proposed method.



2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Cuimei Jiang ◽  
Shutang Liu ◽  
Chao Luo

We propose a new fractional-order chaotic complex system and study its dynamical properties including symmetry, equilibria and their stability, and chaotic attractors. Chaotic behavior is verified with phase portraits, bifurcation diagrams, the histories, and the largest Lyapunov exponents. And we find that chaos exists in this system with orders less than 5 by numerical simulation. Additionally, antisynchronization of different fractional-order chaotic complex systems is considered based on the stability theory of fractional-order systems. This new system and the fractional-order complex Lorenz system can achieve antisynchronization. Corresponding numerical simulations show the effectiveness and feasibility of the scheme.



Sign in / Sign up

Export Citation Format

Share Document