scholarly journals Existence Theory for th Order Nonlocal Integral Boundary Value Problems and Extension to Fractional Case

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas ◽  
Hamed H. Alsulami

This paper is devoted to the study of the existence and uniqueness of solutions for th order differential equations with nonlocal integral boundary conditions. Our results are based on a variety of fixed point theorems. Some illustrative examples are discussed. We also discuss the Caputo type fractional analogue of the higher-order problem of ordinary differential equations.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Hana Al-Hutami

This paper is concerned with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractionalq-difference equations with nonlocal integral boundary conditions. The existence results are obtained by applying some well-known fixed point theorems and illustrated with examples.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Yagub A. Sharifov

In the present study, the nonlocal and integral boundary value problems for the system of nonlinear fractional differential equations involving the Caputo fractional derivative are investigated. Theorems on existence and uniqueness of a solution are established under some sufficient conditions on nonlinear terms. A simple example of application of the main result of this paper is presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Karim Guida ◽  
Khalid Hilal ◽  
Lahcen Ibnelazyz

This paper deals with the existence and uniqueness of solutions for a new class of coupled systems of Hilfer fractional pantograph differential equations with nonlocal integral boundary conditions. First of all, we are going to give some definitions that are necessary for the understanding of the manuscript; second of all, we are going to prove our main results using the fixed point theorems, namely, Banach’s contraction principle and Krasnoselskii’s fixed point theorem; in the end, we are giving two examples to illustrate our results.


2020 ◽  
Vol 23 (5) ◽  
pp. 1401-1415
Author(s):  
Palanisamy Duraisamy ◽  
Thangaraj Nandha Gopal ◽  
Muthaiah Subramanian

Abstract In this article, we study the existence and uniqueness of solutions for nonlinear fractional integro-differential equations with nonlocal Erdélyi-Kober type integral boundary conditions. The existence results are based on Krasnoselskii’s and Schaefer’s fixed point theorems, whereas the uniqueness result is based on the contraction mapping principle. Examples illustrating the applicability of our main results are also constructed.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Jiqiang Jiang ◽  
Lishan Liu ◽  
Yonghong Wu

We consider the existence of positive solutions for a class of nonlinear integral boundary value problems for fractional differential equations. By using some fixed point theorems, the existence and multiplicity results of positive solutions are obtained. The results obtained in this paper improve and generalize some well-known results.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1905
Author(s):  
Athasit Wongcharoen ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, we study boundary value problems for differential inclusions, involving Hilfer fractional derivatives and nonlocal integral boundary conditions. New existence results are obtained by using standard fixed point theorems for multivalued analysis. Examples illustrating our results are also presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Peiluan Li ◽  
Changjin Xu

We investigate the existence of mild solutions for fractional order differential equations with integral boundary conditions and not instantaneous impulses. By some fixed-point theorems, we establish sufficient conditions for the existence and uniqueness of solutions. Finally, two interesting examples are given to illustrate our theory results.


2020 ◽  
Vol 1 (1) ◽  
pp. 47-63
Author(s):  
Hanan A. Wahash ◽  
Satish K. Panchal

In this paper, we consider a class of boundary value problems for nonlinear two-term fractional differential equations with integral boundary conditions involving two $\psi $-Caputo fractional derivative. With the help of the properties Green function, the fixed point theorems of Schauder and Banach, and the method of upper and lower solutions, we derive the existence and uniqueness of positive solution of a proposed problem. Finally, an example is provided to illustrate the acquired results.


Sign in / Sign up

Export Citation Format

Share Document