scholarly journals Estimating Friction Parameters in Reaction Wheels for Attitude Control

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Valdemir Carrara ◽  
Hélio Koiti Kuga

The ever-increasing use of artificial satellites in both the study of terrestrial and space phenomena demands a search for increasingly accurate and reliable pointing systems. It is common nowadays to employ reaction wheels for attitude control that provide wide range of torque magnitude, high reliability, and little power consumption. However, the bearing friction causes the response of wheel to be nonlinear, which may compromise the stability and precision of the control system as a whole. This work presents a characterization of a typical reaction wheel of 0.65 Nms maximum angular momentum storage, in order to estimate their friction parameters. It used a friction model that takes into account the Coulomb friction, viscous friction, and static friction, according to the Stribeck formulation. The parameters were estimated by means of a nonlinear batch least squares procedure, from data raised experimentally. The results have shown wide agreement with the experimental data and were also close to a deterministic model, previously obtained for this wheel. This model was then employed in a Dynamic Model Compensator (DMC) control, which successfully reduced the attitude steady state error of an instrumented one-axis air-bearing table.

Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 212-232
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The important change in the transition from partial to high automation is that a vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorber with two friction types: The intended viscous friction dissipates the chassis vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In this article, a simulation approach is introduced to model damper friction based on the most friction-relevant parameters. Since damper friction is highly dependent on geometry, which can vary widely, three-dimensional (3D) structural FEM is used to determine the deformations of the damper parts resulting from mounting and varying operation conditions. In the respective contact zones, a dynamic friction model is applied and parameterized based on the single friction point measurements. Subsequent to the parameterization of the overall friction model with geometry data, operation conditions, material properties and friction model parameters, single friction point simulations are performed, analyzed and validated against single friction point measurements. It is shown that this simulation method allows for friction prediction with high accuracy. Consequently, its application enables a wide range of parameters relevant to damper friction to be investigated with significantly increased development efficiency.


Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Christine Qiong Wu ◽  
Cyrus Shafai

In this paper, we provide not only key knowledge for friction model selection among candidate models but also experimental friction features compared with numerical predictions reproduced by the candidate models. A motor-driven one-dimensional sliding block has been designed and fabricated in our lab to carry out a wide range of control tasks for the friction feature demonstrations and the parameter identifications of the candidate models. Besides the well-known static features such as break-away force and viscous friction, our setup experimentally demonstrates subtle dynamic features that characterize the physical behavior. The candidate models coupled with correct parameters experimentally obtained from our setup are taken to simulate the features of interest. The first part of this work briefly introduces the candidate friction models, the friction features of interest, and our experimental approach. The second part of this work is dedicated to the comparisons between the experimental features and the numerical model predictions. The discrepancies between the experimental features and the numerical model predictions help researchers to judge the accuracy of the models. The relation between the candidate model structures and their numerical friction feature predictions is investigated and discussed. A table that summarizes how to select the most optimal friction model among a variety of engineering applications is presented at the end of this paper. Such comprehensive comparisons have not been reported in previous literature.


1999 ◽  
Vol 121 (4) ◽  
pp. 619-624 ◽  
Author(s):  
Seon-Woo Lee ◽  
Jong-Hwan Kim

This paper presents an identification technique using evolution strategies (ES) for an integrated friction model of a positioning table. The friction model is based on Karnopp’s friction-velocity model with the rising static friction and spring-like property. Using the (μ + λ)-ES, the system parameters are identified with the experimental input and output data. The proposed control law consists of a conventional linear feedback control input, a friction compensation term and a sliding control input. The proposed control scheme can guarantee the stability of the overall system, even in the presence of the external disturbances and the modeling error between the real friction and the identified model. Experiments on an positioning table, called X-Y table, demonstrate the effectiveness of the proposed identification and control schemes.


Author(s):  
Mohammad Vakil ◽  
Reza Fotouhi ◽  
Peter N. Nikiforuk

In this paper a new identification method to obtain the friction parameters in the joints of robotic manipulators is presented. These parameters are coulomb friction, static friction, Stribeck velocity constant and viscous damping coefficient. The available methods to find these parameters either require the design of a controller or the precise value of system parameters such as mass moment of inertia. In contrast, the new method proposed here finds these parameters by a nonlinear optimization approach which requires neither any knowledge of system’s parameters nor any controller design. The corresponding nonlinear optimization problem is solved using an efficient technique which does not require iteration or any initial estimate of optimization parameters. The new method proposed in this paper was experimentally verified on a robotic manipulator available in the robotics laboratory at the University of Saskatchewan.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Dorian Cojocaru ◽  
Dan B. Marghitu

The impact between a rotating link and a solid flat surface is considered. For the impact, we consider three distinct periods: elastic period, elastoplastic period, and restitution period. A Hertzian contact force is considered for the elastic period. Nonlinear contact forces developed from finite element analysis are used for the remaining two phases. The tangential effect is taken into account considering a friction force that combines the Coulomb dry friction model and a viscous friction function of velocity. Simulations results are obtained for different friction parameters. An experimental setup was designed to measure the contact time during impact. The experimental and simulation results are compared for different lengths of the link.


Author(s):  
Sue Ann Campbell ◽  
Stephanie Crawford ◽  
Kirsten Morris

We consider an experimental system consisting of a pendulum, which is free to rotate 360deg, attached to a cart. The cart can move in one dimension. We study the effect of friction on the design and performance of a feedback controller, a linear quadratic regulator, that aims to stabilize the pendulum in the upright position. We show that a controller designed using a simple viscous friction model has poor performance—small amplitude oscillations occur when the controller is implemented. We consider various models for stick slip friction between the cart and the track and measure the friction parameters experimentally. We give strong evidence that stick slip friction is the source of the small amplitude oscillations. A controller designed using a stick slip friction model stabilizes the system, and the small amplitude oscillations are eliminated.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 538
Author(s):  
Malal Kane ◽  
Ebrahim Riahi ◽  
Minh-Tan Do

This paper deals with the modeling of rolling resistance and the analysis of the effect of pavement texture. The Rolling Resistance Model (RRM) is a simplification of the no-slip rate of the Dynamic Friction Model (DFM) based on modeling tire/road contact and is intended to predict the tire/pavement friction at all slip rates. The experimental validation of this approach was performed using a machine simulating tires rolling on road surfaces. The tested pavement surfaces have a wide range of textures from smooth to macro-micro-rough, thus covering all the surfaces likely to be encountered on the roads. A comparison between the experimental rolling resistances and those predicted by the model shows a good correlation, with an R2 exceeding 0.8. A good correlation between the MPD (mean profile depth) of the surfaces and the rolling resistance is also shown. It is also noticed that a random distribution and pointed shape of the summits may also be an inconvenience concerning rolling resistance, thus leading to the conclusion that beyond the macrotexture, the positivity of the texture should also be taken into account. A possible simplification of the model by neglecting the damping part in the constitutive model of the rubber is also noted.


Sign in / Sign up

Export Citation Format

Share Document