scholarly journals A Study of Nonlinear Fractionalq-Difference Equations with Nonlocal Integral Boundary Conditions

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Hana Al-Hutami

This paper is concerned with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractionalq-difference equations with nonlocal integral boundary conditions. The existence results are obtained by applying some well-known fixed point theorems and illustrated with examples.

2020 ◽  
Vol 1 (1) ◽  
pp. 47-63
Author(s):  
Hanan A. Wahash ◽  
Satish K. Panchal

In this paper, we consider a class of boundary value problems for nonlinear two-term fractional differential equations with integral boundary conditions involving two $\psi $-Caputo fractional derivative. With the help of the properties Green function, the fixed point theorems of Schauder and Banach, and the method of upper and lower solutions, we derive the existence and uniqueness of positive solution of a proposed problem. Finally, an example is provided to illustrate the acquired results.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chanon Promsakon ◽  
Nattapong Kamsrisuk ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, we investigate the existence and uniqueness of solutions for a boundary value problem for second-order quantum (p,q)-difference equations with separated boundary conditions, by using classical fixed point theorems. Examples illustrating the main results are also presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lahcen Ibnelazyz ◽  
Karim Guida ◽  
Khalid Hilal ◽  
Said Melliani

In this paper, we investigate the existence and uniqueness of a coupled system of nonlinear fractional Langevin equations with nonseparated type integral boundary conditions. We use Banach’s and Krasnoselskii’s fixed point theorems to obtain the results. Lastly, we give two examples to show the effectiveness of the main results.


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2521-2533 ◽  
Author(s):  
Wengui Yang

This paper deals with the existence and uniqueness of solutions for a class of nonlinear fractional q-difference equations boundary value problems involving four-point nonlocal Riemann-Liouville q-integral boundary conditions of different order. Our results are based on some well-known tools of fixed point theory such as Banach contraction principle, Krasnoselskii fixed point theorem, and the Leray-Schauder nonlinear alternative. As applications, some interesting examples are presented to illustrate the main results.


2022 ◽  
Vol 7 (3) ◽  
pp. 3477-3493
Author(s):  
Adel Lachouri ◽  
◽  
Mohammed S. Abdo ◽  
Abdelouaheb Ardjouni ◽  
Bahaaeldin Abdalla ◽  
...  

<abstract><p>In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the $ \varphi $-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a $ \varphi $-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.</p></abstract>


2013 ◽  
Vol 18 (4) ◽  
pp. 493-518 ◽  
Author(s):  
Lin Wang ◽  
Xingqiu Zhang ◽  
Xinyi Lu

In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green’s function, a nonlinear alternative of Leray–Schauder-type, Guo–Krasnoselskii’s fixed point theorem in a cone and the Banach fixed point theorem. Some examples are included to show the applicability of our results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Nadjet Laledj ◽  
Yong Zhou

AbstractThis paper deals with some existence, uniqueness and Ulam–Hyers–Rassias stability results for a class of implicit fractional q-difference equations. Some applications are made of some fixed point theorems in Banach spaces for the existence and uniqueness of solutions, next we prove that our problem is generalized Ulam–Hyers–Rassias stable. Two illustrative examples are given in the last section.


Sign in / Sign up

Export Citation Format

Share Document