Existence of a Period-Two Solution in Linearizable Difference Equations
Keyword(s):
Consider the difference equationxn+1=f(xn,…,xn−k),n=0,1,…,wherek∈{1,2,…}and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equationxn+l=∑i=1−lkgixn−i,n=0,1,…,wherel,k∈{1,2,…}and the functionsgi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution whenl=1.
1933 ◽
Vol 29
(3)
◽
pp. 373-381
Well-defined solutions of the difference equation xn = xn−3kxn−4kxn−5k xn−kxn−2k(±1±xn−3kxn−4kxn−5k)
2019 ◽
Vol 12
(06)
◽
pp. 2040016
Keyword(s):
2011 ◽
Vol 216
◽
pp. 50-55
◽
2010 ◽
Vol 47
(3)
◽
pp. 401-418
◽
Keyword(s):
2020 ◽
Vol 27
(2)
◽
pp. 165-175
◽
2011 ◽
Vol 2011
◽
pp. 1-11
2009 ◽
Vol 2009
◽
pp. 1-8
◽
Keyword(s):