scholarly journals Corrosion Behavior and Adsorption Thermodynamics of Some Schiff Bases on Mild Steel Corrosion in Industrial Water Medium

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Shivakumar ◽  
K. N. Mohana

The inhibition performance and adsorption behavior of (E)-2-(3-nitrobenzylidene) hydrazine carbothioamide (SB1) and (E)-2-(4-(dimethylamino) benzylidene) hydrazine carbothioamide (SB2) on mild steel corrosion in industrial water medium have been investigated by gravimetric, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results revealed that inhibition efficiency depends on both the concentration of the inhibitors and temperature of the system. Increasing temperature reduces the inhibition efficiency of both inhibitors. Polarization studies indicated that these compounds behave as mixed type of inhibitors. The adsorption of both inhibitors was spontaneous and followed Langmuir adsorption isotherm. Thermodynamic parameters are calculated and discussed. The relation between inhibition efficiency and molecular structures of SB1and SB2was discussed by considering quantum chemical parameters. The surface adsorbed film was characterized by scanning electron microscopy (SEM).

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chikkur B. Pradeep Kumar ◽  
Kikkeri N. Mohana

Achyranthes aspera (AA) extracts were studied as corrosion inhibitor for mild steel (MS) in industrial water medium using mass loss and electrochemical techniques. The results of the study revealed that AA extracts inhibit MS corrosion through adsorption process following Langmuir adsorption isotherm model. The protection efficiency increased with increase in inhibitor concentration and decreased with temperature. The electrochemical impedance spectroscopy (EIS) measurements showed that the charge transfer resistance increases with increase in the concentration of AA extracts. The polarization curves obtained indicate that AA extracts act as mixed type of inhibitor. Scanning electron microscopy (SEM) was used to analyze the surface adsorbed film.


2011 ◽  
Vol 8 (s1) ◽  
pp. S53-S60 ◽  
Author(s):  
M. Vishnudevan

The inhibition efficiency of mild steel corrosion in HCl acidic solution containing various concentrations of mixed inhibitors were evaluated by conducting Tafel polarization and electrochemical impedance studies. The mixed inhibitors used in this present investigation were trisodium citrate and sodium benzoate. In this present investigation 0.01 N to 0.1 N concentrations of HCl was used at 30°C. Sodium benzoate present in the mixed inhibitive system enhanced the inhibition efficiency through chemisorptions. The maximum inhibition efficiency ( 95.4%) was obtained for the mixed inhibitive system containing 0.05 M citrate and 0.5 M benzoate in 0.1 N HCl.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Aouatife Zaher ◽  
Abdelkarim Chaouiki ◽  
Rachid Salghi ◽  
Asmaa Boukhraz ◽  
Brahim Bourkhiss ◽  
...  

The chemical composition of the methanolic extract of Ammi visnaga (Khella) seeds from the Sidi Slimane region is determined for the first time by Gas Chromatography coupled with Mass Spectrometry (GC/MS). Ten compounds representing 99.638% of the total extract were identified. Khellin (49.011%), Visnagin (26.537%) and Dimethylethylamine (15.108%) are the major components. Moreover, the inhibitory effect of the Methanolic extract of the seeds of Ammi visnaga on the corrosion of mild steel in a solution of 1M HCl is determined using weight loss measurements, the potentiodynamic technique as well as the technique of electrochemical impedance spectroscopy (EIS). It is found that the extract reduces the corrosion rate of the steel in the acid solution. Inhibition efficiency increases as the concentration of the extract increases. The tested compound has an inhibition efficiency of 84% for a concentration equal to 1.0 g/L. The polarization measurements indicate that the examined extract acts as a mixed inhibitor with predominant anodic efficacy. The data obtained from EIS studies are analyzed to model this process using appropriate equivalent circuit models. The adsorption of the extract on the surface of the mild steel obeys the Langmuir adsorption isotherm in acidic medium and the activation is determined and discussed.


Author(s):  
Chinonso Blessing Adindu ◽  
Emeka Emmanuel Oguzie ◽  
Maduabuchi Arinzechukwu Chidiebere

The corrosion and adsorption behavior of leaf extract ofFuntumiaelastica(FE) on mild steel corrosion was studied in 1 M HCl using gravimetric ,electrochemical impedance spectroscopy, potentiodynamic polarization and Fourier transformed infrared spectroscopy methods, Quantum chemical calculations were performed to theoretically correlate the inhibition performance of the inhibitor with its electronic structural parameters. The gravimetric experiment revealed that the extract effectively inhibited the corrosion of mild steel even at a prolonged exposure time. The impedance and polarization results revealed that the extract inhibited both the cathodic and anodic partial reactions via the adsorption of the inhibitor on the metal/solution interface. The FTIR results revealed FE as an adsorption inhibitor. The calculated quantum chemical parameters associated with the molecular structure of FE confirmed its inhibiting efficacy.


2011 ◽  
Vol 239-242 ◽  
pp. 1409-1413
Author(s):  
Hong Mei Wang ◽  
Ke Long Huang ◽  
Zhi Ping Zhu

The inhibiting behavior of 1-ethyl-3-butylbenzotriazolium ionic liquids,[C2Bt][Br] ,on mild steel corrosion in 5 wt.% HCl as corroding solution was investigated using weight loss,potentiodynamic polarization and electrochemical impedance measurements. The obtained results indicated that [C2Bt][Br] is a good inhibitor for the mild steel in 5 wt.% HCl solution. The inhibition efficiency increased with an increase of inhibitive concentration. Potentiodynamic polarization data indicated that the [C2Bt][Br] acted essentially as a mixed-type inhibitor. The electrochemical impedance study showed that corrosion inhibition took place by adsorption.


Author(s):  
Lebe A. Nnanna ◽  
Wisdom O. John ◽  
Tochukwu E. Esihe ◽  
Kelechi C. Denkoro ◽  
Victor I. Okparaku ◽  
...  

Inhibition effect of Costusafer on mild steel in 0.5 M HCl was studied using gravimetric method at room temperature. It was found out that Costusafer inhibited the corrosion of mild steel in the acidic environment and that the efficiency of inhibition increased as the concentration of the inhibitor in the environment increased. The data was used to test different isotherms and it suited the Langmuir isotherm. A value of -15.995 kJmol-1 was gotten for the ∆Goads. This value showed that the extracts of Costusafer inhibited the corrosion process through physiosorption mechanism. The high value of inhibition efficiency of the extract as the concentration increased in rationalized in terms of the increase in herteroatoms, saponnins and tannins which are present in the extract.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 27
Author(s):  
Shaimaa B. Al-Bghdadi ◽  
Mahdi M. Hanoon ◽  
Jafer F. Odah ◽  
Lina M. Shaker ◽  
Ahmed A. Al-Amiery

A New benzylidene derivative namely benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), was successfully synthesized and characterized using Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance and elemental analysis (CHN) techniques. The inhibition efficiency of BPTA on mild steel corrosion in 1.0 N HCl was tested at various temperatures. The methodological work was achieved by gravimetric method complemented with morphological investigation. The concentrations of inhibitor were 0.1, 0.2, 0.3, 0.4 and 0.5 mM at the temperatures 303, 313, 323 and 333 K. The BPTA, molecules as become superior corrosion inhibitor with 92% inhibition efficiency of mild steel coupon in the acidic environment. The inhibition efficiency increased with increasing concentrations of BPTA and the excellent efficiency was performed with the 0.5 mM concentration and followed with 0.4 mM. In acidic environment, the 0.5 and 0.4 mM gave the optimum performance with weight loss technique and scanning electron microscopy analysis. On the other hand, the inhibition efficiency decreased with the increase of temperature. Results of BPTA indicated mixed type inhibitor and the adsorption on the mild steels surface obeys the Langmuir adsorption isotherm. It was found that the BPTA performance depend on the concentration and the solution temperature. Quantum chemical calculations have been done to correlate the electronic characteristics of BPTA with the corrosive inhibitive impact. Experimental and theoretical results are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document