scholarly journals Research on the Behavior of the Steel Plated Shear Wall by Finite Element Method

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. M. R. Mortazavi ◽  
M. Ghassemieh ◽  
M. S. Ghobadi

From the early’ 70s till today, steel shear walls have been used as the primary lateral force resisting system in some of the significant buildings around the world. To assist understanding the behavior of this system, there have been research programs in USA, Canada, Japan, and UK. This research presents the dynamic and cyclic behavior of steel plated shear wall. In order to simulate the behavior of such a wall structure, finite element method of analysis is implemented. Several analytical models are implemented, in order to obtain the dynamic as well as cyclic behavior of such system. The material nonlinearity as well as geometrical nonlinearity along with the postbuckling behavior of steel plate subjected to cyclic loading has also been employed. The hysteresis diagrams of steel shear wall system in terms of storey shear drift are presented. The results obtained from the analyses are compared to some experimental results reported by other researchers previously. The nonlinear time history analysis of such system is carried out for different seismic response spectra. Finally, the significant factors and parameters of the steel plated shear wall which affect the overall behavior of such system are acknowledged and their effects were recognized.

2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940003 ◽  
Author(s):  
Xiaoyan Yang ◽  
Jing Wu ◽  
Jian Zhang ◽  
Yulong Feng

A novel structural wall with hinge support and buckling restrained braces (BRBs) set in the base (HWBB) is studied. HWBB can be applied to precast manufacturing due to its considerable ductility and the separate loading mechanism in HWBB–frame structure. In elastic stage, BRBs play a brace role to make the hinged wall resist horizontal forces like a shear wall. BRBs dissipate seismic energy through plastic and hysteresis effects after yielding and the damage is only concentrated in BRBs. The performance of an HWBB is equivalent to a shear wall structure with excellent ductility and stable energy dissipation capacity. Numerical analysis indicates that the hinged wall body in the HWBB well controls the deformation mode of the structure, avoiding the concentration of story drifts, thereby protecting the remaining parts of the structure. It is revealed that the moments of the wall body will generate significant increments after BRBs yielding, and the Seismic Intensity Superposition Method is proposed to calculate the moments. In this method, nonlinear response of an HWBB can be regarded as the sum of the responses of two elastic corresponding structures excited with two parts of the seismic intensity, respectively. Modes and moments equations of the hinged wall with uniform distribution of stiffness and mass are derived, and calculation results coincide with that of the nonlinear time history analysis (NHA). For a more general case, the white noise scan method is proposed to solve the structure’s natural characteristics and to further calculate the response. Finally, the post-yielding moment calculation method and the process based on design response spectrum are proposed. It is proved that the moments from proposed Seismic Intensity Superposition Method can envelop most of the moments from NHA, and it is a good estimate of the response of HWBB in nonlinear stage.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401985368 ◽  
Author(s):  
Jesús Acevedo-Mijangos ◽  
Antonio Ramírez-Treviño ◽  
Daniel A May-Arrioja ◽  
Patrick LiKamWa ◽  
Héctor Vázquez-Leal ◽  
...  

We present a resonant magnetic field sensor based on microelectromechanical systems technology with optical detection. The sensor has single resonator composed of two orthogonal silicon beams (600 µm × 26 µm × 2 µm) with an integrated mirror (50 µm × 34 µm × 0.11 µm) and gold tracks (16 µm × 0.11 µm). The resonator is fabricated using silicon-on-insulator wafer in a simple bulk micromachining process. The sensor has easy performance that allows its oscillation in the first bending vibration mode through the Lorentz force for monitoring in-plane magnetic field. Analytical models are developed to predict first bending resonant frequency, quality factor, and displacements of the resonator. In addition, finite element method models are obtained to estimate the resonator performance. The results of the proposed analytical models agree well with those of the finite element method models. For alternating electrical current of 30 mA, the sensor has a theoretical linear response, a first bending resonant frequency of 43.8 kHz, a sensitivity of 46.1 µm T−1, and a power consumption close to 54 mW. The experimental resonant frequency of the sensor is 53 kHz. The proposed sensor could be used for monitoring in-plane magnetic field without a complex signal conditioning system.


2010 ◽  
Vol 163-167 ◽  
pp. 1134-1138 ◽  
Author(s):  
Xiao Chun Lao ◽  
Xiao Lei Han

In order to determine the deformation performance index limits for medium-height RC shear wall components based on Chinese codes with the shear span ratio between 1.0 and 2.0, the reliability of the nonlinear finite element method was first verified by four typical medium-height shear wall components experiments in some literatures. Then, the nonlinear finite element method was applied to analyze a set of medium-height RC shear wall components designed according to current Chinese codes. Parametric studies were made of the influence of shear span ratio λ, axial compression ratio μ and main flexural reinforcement ratio of confined boundary members ρflex. Finally, the deformation performance index and its limits of the medium-height RC shear wall components under severe earthquakes are presented by the finite element model results.


2013 ◽  
Vol 12 (2) ◽  
pp. 251-258
Author(s):  
Krzysztof Ostrowski ◽  
Jan Łaguna ◽  
Aleksander Kozłowski

End-plate connections are very often used is steelwork, as tension and bending connections. As a result of deflection of end plate, additional forces, known as prying forces arise and consequently increase stresses in bolts. Eurocode 1993-1-8 do not distinguish end-plate connections prestressed by high strength bolts from non-prestressed. The aim of the paper is to perform the comparison of previous analytical models and code regulations for coefficient of prying forces to the experimental tests and modelling by finite element method. Results of the analysis show that the behaviour of prestressed connection is essentially different with comparison to non-prestressed.


2021 ◽  
Vol 12 (01) ◽  
pp. 2150002
Author(s):  
Xiaoyu Qin ◽  
Guomin Han ◽  
Shengxu Xia ◽  
Weijie Liu ◽  
De-Ye Lin

This paper reports the modeling and simulation of cyclic behavior of single crystal nickel-based superalloy by using the crystal plasticity finite element method. Material constitutive model based on the crystal plasticity theory is developed and is implemented in a parallel way as user subroutine modules embedded in the commercial Abaqus[Formula: see text] software. For simplicity in calibration and without loss of generality, the crystal plasticity constitutive relationship used in this work takes the form that only contains a few parameters. The parameters are optimized by using the Powell algorithm. We employ the calibrated constitutive model with the finite element solver on a cuboid and a blade to simulate cyclic and anisotropic properties of single crystal superalloy. Results show that the predicted stress–strain curves are in good agreement with the experimental measurements, and anisotropic results are presented in both elastic and plastic regions.


2012 ◽  
Vol 479-481 ◽  
pp. 421-425 ◽  
Author(s):  
Ya Jun Wang ◽  
Wo Hua Zhang

Fuzzy sub-space, with analysis on generalized uncertainty of damage, is setup in this paper when topological consistency of damage fuzzy and randomness on [0,1] scale being demonstrated deeply. Furthermore, deduced under fuzzy characteristics translation are three fuzzy analytical models of damage functional, namely, half depressed distribution, swing distribution, combined swing distribution, by which, fuzzy extension territory on damage evolution is formulated here. With the representation of damage variable ß probabilistic distribution as well as formulation on stochastic sub-space of damage variable, expended on the basis of extension criterion and fuzzy probability is damage model defined within generalized uncertain space, by which, introduced is fuzzy probabilistic integral algorithm of generalized uncertain damage variable that could be simulated by the forthcoming fuzzy stochastic damage constitution model based on three fuzzy functional models before. Moreover, in order to realize the joint of fuzzy input and output procedure on generalized uncertain damage variable calculation, fuzzy self-adapting stochastic damage reliability algorithm is, with the update on fuzzy stochastic finite element method within standard normal distribution probabilistic space by the help of foregoing fuzzy stochastic damage constitution model, offered in this paper on the basis of equivalent-normalization and orthogonal design theory. 3-dimension fuzzy stochastic damage mechanical status of numerical model of Longtan Rolled-Concrete Dam is researched here by fuzzy stochastic damage finite element method program under property authority. Random field parameters’ statistical dependence and non-normality are considered comprehensively in fuzzy stochastic damage model of this paper, by which, damage uncertainty’s proper development and conception expansion as well as fuzzy and randomness of mechanics are hybridized overall in fuzzy stochastic damage analysis process.


Sign in / Sign up

Export Citation Format

Share Document