scholarly journals Numerical Solution of Fractional Diffusion Equation Model for Freezing in Finite Media

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
R. S. Damor ◽  
Sushil Kumar ◽  
A. K. Shukla

Phase change problems play very important role in engineering sciences including casting of nuclear waste materials, vivo freezing of biological tissues, solar collectors and so forth. In present paper, we propose fractional diffusion equation model for alloy solidification. A transient heat transfer analysis is carried out to study the anomalous diffusion. Finite difference method is used to solve the fractional differential equation model. The temperature profiles, the motion of interface, and interface velocity have been evaluated for space fractional diffusion equation.

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 178 ◽  
Author(s):  
Nikita S. Belevtsov ◽  
Stanislav Yu. Lukashchuk

Symmetry properties of a nonlinear two-dimensional space-fractional diffusion equation with the Riesz potential of the order α ∈ ( 0 , 1 ) are studied. Lie point symmetry group classification of this equation is performed with respect to diffusivity function. To construct conservation laws for the considered equation, the concept of nonlinear self-adjointness is adopted to a certain class of space-fractional differential equations with the Riesz potential. It is proved that the equation in question is nonlinearly self-adjoint. An extension of Ibragimov’s constructive algorithm for finding conservation laws is proposed, and the corresponding Noether operators for fractional differential equations with the Riesz potential are presented in an explicit form. To illustrate the proposed approach, conservation laws for the considered nonlinear space-fractional diffusion equation are constructed by using its Lie point symmetries.


Sign in / Sign up

Export Citation Format

Share Document