scholarly journals Dynamics and Matter-Wave Solitons in Bose-Einstein Condensates with Two- and Three-Body Interactions

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jing Chen ◽  
Jie Yang ◽  
Lu Zhang

By means of similarity transformation, this paper proposes the matter-wave soliton solutions and dynamics of the variable coefficient cubic-quintic nonlinear Schrödinger equation arising from Bose-Einstein condensates with time-dependent two- and three-body interactions. It is found that, under the effect of time-dependent two- and three-body interaction and harmonic potential with time-dependent frequency, the density of atom condensates will gradually diminish and finally collapse.

2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.


2022 ◽  
Author(s):  
Yajie Yang ◽  
Ying Dong

Abstract The gain or loss effect on the dynamics of the matter-wave solitons in three-component Bose-Einstein condensates with time-modulated interactions trapped in parabolic external potentials are investigated analytically. Some exact matter-wave soliton solutions to the three-coupled Gross-Pitaevskii equation describing the three-component Bose-Einstein condensates are constructed by similarity transformation. The dynamical properties of the matter-wave solitons are analyzed graphically, and the effects of the gain or loss parameter and the frequency of the external potentials on the matter-wave solitons are explored. It is shown that the gain coefficient makes the atom condensate to absorb energy from the background, while the loss coefficient brings about the collapse of the condensate.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850184 ◽  
Author(s):  
Emmanuel Kengne ◽  
Ahmed Lakhssassi

To analytically investigate the matter-wave solitons of Bose–Einstein condensates (BECs) in time-dependent complex potential, we consider a cubic-quintic Gross–Pitaevskii (GP) equation with distributed coefficients and a dissipative term. By introducing a suitable ansatz, we establish the criterion of the modulational instability (MI) of the system and present an explicit expression for the growth rate of a purely growing MI. Effects of the parabolic background potential, as well as of the linear potential, the gain/loss parameter, and the two- and three-body interatomic interactions on the MI are investigated. We show how the feeding/loss parameter can be well used to control the instability of the system. The analytical resolution of the considered GP equation leads to exact bright, dark and kink solitary wave solutions which are used to investigate analytically the dynamics of matter-wave solitons in BECs under consideration. These analytical investigations show that the amplitude and the motion of bright, dark and kink solitary waves depend on the strengths of the two- and three-body interatomic interactions, as well as on the strengths of the external trapping potential and the parameter of the gain/loss of atoms in the condensate.


2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Juan Belmonte-Beitia

We give a proof of the existence of stationary bright soliton solutions of the cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity. By using bifurcation theory, we prove that the norm of the positive solution goes to zero as the parameterλ, called chemical potential in the Bose-Einstein condensates' literature, tends to zero. Moreover, we solve the time-dependent cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearities by using a numerical method.


Sign in / Sign up

Export Citation Format

Share Document