scholarly journals Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Saiful Islam ◽  
Abu Saleh Ahmed ◽  
Aminul Islam ◽  
Sidek Abdul Aziz ◽  
Low Chyi Xian ◽  
...  

This paper presents the result of investigations carried out in studying the emission and performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel) had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20) a suitable alternative fuel for diesel and could help in controlling air pollution.

Author(s):  
C. B. How ◽  
N. M. Taib ◽  
M. R. A. Mansor

Blending biodiesel in the diesel would increase the tendency of having a high viscosity fuel. For this reason, the addition of a small amount of additives into the blends may improve the engine performance and lead to better fuel consumption. The purpose of this paper is to experimentally investigate the performance and emissions generated by various mixtures of biodiesel and diesel with palm oil based additive in the compression ignition direct injection diesel engine of Yanmar TF90. Experiments were also conducted to identify the ideal biodiesel, diesel and the additive mixture that produces the optimum engine emission and performance. The experiment was conducted by using mixtures that consisted of 10%, 20% and 30% of biodiesel with and without the additives. From the results of the experiments, PB10 with 0.8 ml additives produced the highest braking power and lowest fuel consumption as compared to the diesel and the rest of the biodiesel blends. The presence of biodiesel and additives were found to not only improve the engine performance, but also led to the reduction of carbon emission. Although all the diesel, biodiesel and additive demonstrated low smoke emission with a complete combustion, a slight increase however, was observed in the NOx emission. In conclusion, PB10 is seen as the most ideal blend for diesel engine in terms of providing the most optimum engine emission and performance.


ROTOR ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 10
Author(s):  
Moh. Wafir ◽  
Digdo Listyadi ◽  
Rahma Rei Sakura

The decline in fuel oil production has led to the development of alternative fuels that are renewable and more environmentally friendly. An alternative fuel that can be developed is biodiesel. In this study aims to develop alternative biodiesel fuels as a substitute for fossil oil fuels that are feasible applied to diesel engines. This study conducted a diesel engine performance test using mixed fuel from pertadex and biodiesel Aleurites Moluccana with a variation of biodiesel mixture B10, B20, and B30. From the test results using a mixture of biodiesel, the ef ective power and torque produced by the engine decreases compared to using pure pertadex. Among the three variations of the biodiesel mixture, the best ef ective power produced by B10 fuel is 277 Watt and the best torque produced by B10 fuel is 1,238 Nm. Specific fuel consumption in all biodiesel blends is increased compared to pure pertadex. Among the three variations of the biodiesel mixture, the best specific fuel consumption produced by B30 fuel is 1197,67 g/kWh. The thermal ef iciency in all biodiesel blends is increased compared to pure pertadex in B20 and B30 blends. Among the three variations of the biodiesel mixture, the best thermal ef iciency produced by B20 fuel is 7,883 %. The opacity of the engine exhaust gas produced in all biodiesel mixes is getting better compared to using pure pertadex. The best opacity of the engine exhaust gas produced in the use of B30 fuel is 2,3% HSU. Keywords: Biodiesel, Aleurites Moluccana, Diesel Engine Performance, Opacity


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


2021 ◽  
Vol 8 (3) ◽  
pp. 89-96
Author(s):  
Herbert Hasudungan Siahaan ◽  
Armansyah H Tambunan ◽  
Desrial ◽  
Soni Solistia Wirawan

A helical barrier as air-biogas mixing device was designed and tested for direct use of biogas from digester in otto cycle generator set. Homogeneity of the air-fuel mixture can give better combustion reaction and increase engine power. The design was based on simulation, which shows that a 0.039 m length of helical barrier gave a 5% increase in power compared to non-helical barrier. Likewise, the simulations also showed that the helical barrier reduced specific fuel consumption (SFC) by 8%. Accordingly, the mixer with helical barrier was designed, and fabricated. Its performance test confirms the improvement resulted by using helical barriers as air-biogas mixer in the engine. The experiment showed that the power increased by 5% when using helical barrier, while SFC decreased by 4.5%. It is concluded that the helical barrier can increase the homogeneity of the mixture resulting in better engine performance. Besides, emissions produced from the engine using a helical barrier also decreased.


2011 ◽  
Vol 236-238 ◽  
pp. 151-154 ◽  
Author(s):  
Jia Quan Wang ◽  
Ping Sun ◽  
Zhen Chen ◽  
De Qing Mei

The micro-emulsion fuels were prepared with complex surfactant, and the effects of temperature on the stability of these fuels were investigated. The engine performance and the emissions were studied when the engine was fueled with diesel and micro-emulsion diesel respectively. Results showed that when the engine was fueled with micro-emulsion diesel, the NOXand smoke emissions were decreased obviously and HC and CO emissions were increased slightly. Discounting of surfactant and water, the specific fuel consumption of micro-emulsion diesel was lower than those of diesel under any load at the speed of 2900r/min.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.


2021 ◽  
Vol 21 (4) ◽  
pp. 289-301
Author(s):  
Mohanad Aldhaidhawi ◽  
Oras Khudhayer Obayes ◽  
Muneer Najee

In the present work, the direct-injection petrol engine (GDI) combustion, emissions and performance at different engine speeds (1500, 2000, 2500 and 3000 rpm) with a constant throttle position have been studied. The fuel considered in this work is liquid petroleum gas (LPG) and gasoline. The software adopted in all simulations by the AVL BOOST 2016. A Hyundai 2.0 liter, 16 valves and 4 cylinders engine with a compression ratio 17.5:1 is used. The effect of several inlet air temperatures (0, 10, 20, 30, 40 and 50 oC) on the engine performance, combustion and emissions are also studied. The results show that the increase in the inlet air temperature leading to increase the peak fire temperature, brake specific fuel consumption (BSFC) and nitrogen oxide (NOx). However, this process results in a reduction in the peak fire pressure, combustion period (duration), brake power and brake torque. The maximum fire temperature and maximum specific fuel consumption can be achieved when the engine speed is 3000 rpm and the inlet air temperature is 50 ºC.


2014 ◽  
Vol 663 ◽  
pp. 13-18 ◽  
Author(s):  
M. Habibullah ◽  
H.H. Masjuki ◽  
M.A. Kalam ◽  
A.M. Ashraful ◽  
K.A.H. Al Mahmud ◽  
...  

Now-a-days the demand of alternative fuel is continuously increasing all over the world due to the rapid depletion of fossil fuel and increased global demand. Biodiesel is renewable and sustainable energy source derived from vegetable oils and animal fats which can be the best substitute of fossil fuel. This paper investigates the property of different biodiesel such as palm, coconut and their blends with conventional diesel also analyzed the engine performance like engine break power, speed, break specific fuel consumption (BSFC), torque in diesel engine. In this paper 20% palm biodiesel with diesel (P20), 20% coconut biodiesel with diesel (C20), 30% palm biodiesel with diesel (P30), 30% coconut biodiesel with diesel (C30) and combination of 15% palm biodiesel and 15% of coconut biodiesel with diesel (C15P15) were used for study. Biodiesel was produced by using transesterification process. The density and kinematic viscosity for C15P15 fuel is slightly higher and flash point is slightly lower than diesel fuel as well as others two biodiesel blends whereas pure palm oil biodiesel shows the higher flash point and acid value. Engine performance test was carried out at 75 kg load condition with variable speeds of 1400 rpm to 2000 rpm at an interval of 200 rpm. Engine brake power produced by mixed biodiesel (C15P15) is slightly lower than the fossil diesel but slightly higher than biodiesel (only palm or coconut). Engine torque produce by the mixed biodiesel is almost the same with the fossil diesel but higher than the others biodiesel blends. Engine brake specific fuel consumption of mixed biodiesel is slightly higher than fossil diesel but lower than others existing biodiesel. It can be reported that the fuel C15P15 showed better performance and can be used as fuel alternative to diesel fuel to reduce the greenhouse gas emission and dependency on crude oil.


2020 ◽  
Vol 4 (1) ◽  
pp. 20-26
Author(s):  
Sunaryo Sunaryo ◽  
Priyo Adi Sesotyo ◽  
Eqwar Saputra ◽  
Agus Pulung Sasmito

This study analyzes the performance of the diesel engine in terms of power, torque, specific fuel consumption, and thermal efficiency using diesel and pyrolysis oil. The waste plastic oil (WPO) used in this research was produced through a pyrolysis process using raw materials from Low-density Polyethylene (LDPE) mixed with diesel fuel in volume ratios WPO10, WPO20, WPO30, WPO40, and WPO50. In addition, a performance test was carried out on the single-cylinder diesel engine test bench. The results showed that performing the diesel engine with the addition of WPO increased the average power and torque by 5% and 3%, thereby producing a higher heating value. Furthermore, the concentration of WPO also reduces the level of specific fuel consumption to be more efficient, with a decrease in thermal efficiency. In conclusion, plastic waste pyrolysis oil is a promising alternative fuel applicable to a diesel engine.


2018 ◽  
Vol 3 (2) ◽  
pp. 98-105
Author(s):  
Didit Sumardiyanto ◽  
Sri Endah Susilowati

AbstrakPenelitian ini dilakukan untuk mengetahui  pengaruh  pompa injeksi bahan bakar tekanan tinggi terhadap kinerja sebuah mesin pada mesin penggerak utama MV. ALAM JAYA II yang menggunakan mesin diesel YANMAR type M22-EN. Berdasarkan data-data yang diperoleh dilapangan, setelah dilakukan pembahasan bahwa tekanan pompa injeksi berpengaruh pada kinerja mesin diesel. Untuk tekanan pompa injeksi sebesar 820 kgf/cm2, kinerja yang dihasilkan mesin adalah : Daya Indikator 1204 kgf/cm2, Daya Efektif 1016 kgf/cm2, Efisiensi Thermal Efektif 32,0% dan konsumsi bahan bakar spesifik sebesar 192 g/hp.h. Sedangkan setelah dilakukan perbaikan pompa injeksi, tekanan pompa menjadi 1120 kgf/cm2, kinerja yang dihasilkan oleh mesin adalah : Daya efektif 1399 hp, Daya Efektif 1195 hp, Efisiensi Thermal Efektif : 37.32%, dan Konsumsi Bahan Bakar Spesifik sebesar 165.7 g/hp.h Dengan adanya perbaikan pompa injeksi sehingga dapat menaikkan tekanan injeksi dari 880 kgf/cm2 menjadi 1120 kgf/cm2, maka kinerja mesin dapat ditingkatkan Kata kunci: mesin diesel,pompa injeksi, kinerja mesin AbstractThis research was conducted to determine the effect of high pressure fuel injection pump on the performance of a machine on the MV main drive engine. ALAM JAYA II which uses the YANMAR type M22-EN diesel engine. Based on the data obtained in the field, after discussion that the injection pump pressure affects the performance of the diesel engine. For injection pump pressure of 820 kgf /cm2, the engine performance is: Indicator Power 1204 kgf /cm2, Effective Power of 1016 kgf /cm2, Effective Thermal Efficiency of 32.0% and specific fuel consumption of 192 g / hp.h. Whereas after the injection pump repairs, the pump pressure becomes 1120 kgf / cm2, the performance produced by the engine is: Effective 1399 hp, Effective 1195 hp, Effective Thermal Efficiency: 37.32%, and Specific Fuel Consumption of 165.7 g / hp. H With the improvement of the injection pump so that it can increase the injection pressure from 880 kgf / cm2 to 1120 kgf /cm2, the engine performance can be improvedKeywords: diesel engine, injection pump, engine performance


Sign in / Sign up

Export Citation Format

Share Document