scholarly journals Synergistic Effects of Toxic Elements on Heat Shock Proteins

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Khalid Mahmood ◽  
Saima Jadoon ◽  
Qaisar Mahmood ◽  
Muhammad Irshad ◽  
Jamshaid Hussain

Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation.

2015 ◽  
Vol 2015 ◽  
pp. 1-1 ◽  
Author(s):  
Khalid Mahmood ◽  
Saima Jadoon ◽  
Qaisar Mahmood ◽  
Muhammad Irshad ◽  
Jamshaid Hussain

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jakub Szyller ◽  
Iwona Bil-Lula

Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.


2019 ◽  
Vol 24 (6) ◽  
pp. 1027-1044 ◽  
Author(s):  
Dorota Scieglinska ◽  
Zdzisław Krawczyk ◽  
Damian Robert Sojka ◽  
Agnieszka Gogler-Pigłowska

AbstractHeat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Panchanan Maiti ◽  
Jayeeta Manna ◽  
Shobi Veleri ◽  
Sally Frautschy

The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Matthew Shorofsky ◽  
Ange Maguy ◽  
Stanley Nattel

Background - Uncontrolled atrial fibrillation (AF) results in complex changes in the cardiomyocyte electrical and contractile functioning that promote atrial remodeling and the continuation of AF. Recently there has been a growing interest in understanding the role of heat shock proteins (HSPs), which are cytoprotective molecular chaperones, in the pathophysiology of AF. Several groups have examined HSP expression in patients with AF but have yielded mixed results. To allow for  better consistency and reproducibility between subjects, we utilized canine models to reproduce AF- promoting conditions to better investigate the role of HSPs in the pathophysiology of AF. Methods - AF  promoting conditions were simulated in canine models with fifteen adult mongrel dogs (20.6 to 36.0 kg) divided into three groups: (1) Control (n=5), (2) two week ventricular tachypacing (VTP) induced congestive heart failure (CHF) (n=5), and (3) one week atrial tachypacying (ATP) (n=5). Quick frozen right atrial free wall tissue samples were used for protein isolation and were analyzed via Western  blotting with data was expressed as a relative ratio and were analyzed using a two-tailed, unpaired t- test and significance was set at p < 0.05. The expression levels of HSP 90, 70, and 25 were studied along  with the phosphorylation status of HSP27 at serine-78. Results - We first examined the effects of the ATP and CHF heart models on the expression of a select group of HSPs via Western Blot. We found that there was no significant difference in levels of expression of HSP 90, 70, or 25 when either ATP or CHF models were compared to control canines. The phosphorylation status of HSP27 was significantly decreased in the CHF canine model when compared to control (p < 0.0111) and it tended towards a decrease in the ATP canine model when compared to control (p=0.0923). Conclusion - This study showed that even though the expression levels of HSPs may remain constant, there are protein phosphorylation and dephosphorylation events that occur in AF that may have important consequences in its pathophysiology. It is therefore necessary to investigate the full scale of HSP modifications during AF and AF-promoting conditions.


2005 ◽  
Vol 187 (20) ◽  
pp. 7103-7118 ◽  
Author(s):  
Keith V. Alsaker ◽  
Eleftherios T. Papoutsakis

ABSTRACT DNA microarray analysis of Clostridium acetobutylicum was used to examine the genomic-scale gene expression changes during the shift from exponential-phase growth and acidogenesis to stationary phase and solventogenesis. Self-organizing maps were used to identify novel expression patterns of functional gene classes, including aromatic and branched-chain amino acid synthesis, ribosomal proteins, cobalt and iron transporters, cobalamin biosynthesis, and lipid biosynthesis. The majority of pSOL1 megaplasmid genes (in addition to the solventogenic genes aad-ctfA-ctfB and adc) had increased expression at the onset of solventogenesis, suggesting that other megaplasmid genes may play a role in stationary-phase phenomena. Analysis of sporulation genes and comparison with published Bacillus subtilis results indicated conserved expression patterns of early sporulation genes, including spo0A, the sigF operon, and putative canonical genes of the σH and σF regulons. However, sigE expression could not be detected within 7.5 h of initial spo0A expression, consistent with the observed extended time between the appearance of clostridial forms and endospore formation. The results were compared with microarray comparisons of the wild-type strain and the nonsolventogenic, asporogenous M5 strain, which lacks the pSOL1 megaplasmid. While some results were similar, the expression of primary metabolism genes and heat shock proteins was higher in M5, suggesting a difference in metabolic regulation or a butyrate stress response in M5. The results of this microarray platform and analysis were further validated by comparing gene expression patterns to previously published Northern analyses, reporter assays, and two-dimensional protein electrophoresis data of metabolic genes (including all major solventogenesis genes), sporulation genes, heat shock proteins, and other solventogenesis-induced gene expression.


Sign in / Sign up

Export Citation Format

Share Document