scholarly journals Adaptive Fuzzy Containment Control for Uncertain Nonlinear Multiagent Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yang Yu ◽  
Kang-Hyun Jo

This paper considers the containment control problem for uncertain nonlinear multiagent systems under directed graphs. The followers are governed by nonlinear systems with unknown dynamics while the multiple leaders are neighbors of a subset of the followers. Fuzzy logic systems (FLSs) are used to identify the unknown dynamics and a distributed state feedback containment control protocol is proposed. This result is extended to the output feedback case, where observers are designed to estimate the unmeasurable states. Then, an output feedback containment control scheme is presented. The developed state feedback and output feedback containment controllers guarantee that the states of all followers converge to the convex hull spanned by the dynamic leaders. Based on Lyapunov stability theory, it is proved that the containment control errors are uniformly ultimately bounded (UUB). An example is provided to show the effectiveness of the proposed control method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
G. Nava-Antonio ◽  
G. Fernández-Anaya ◽  
E. G. Hernández-Martínez ◽  
J. J. Flores-Godoy ◽  
E. D. Ferreira-Vázquez

In this paper, we unify and extend recent developments in Lyapunov stability theory to present techniques to determine the asymptotic stability of six types of fractional dynamical systems. These differ by being modeled with one of the following fractional derivatives: the Caputo derivative, the Caputo distributed order derivative, the variable order derivative, the conformable derivative, the local fractional derivative, or the distributed order conformable derivative (the latter defined in this work). Additionally, we apply these results to study the consensus of a fractional multiagent system, considering all of the aforementioned fractional operators. Our analysis covers multiagent systems with linear and nonlinear dynamics, affected by bounded external disturbances and described by fixed directed graphs. Lastly, examples, which are solved analytically and numerically, are presented to validate our contributions.



2020 ◽  
Vol 53 (7-8) ◽  
pp. 1364-1375
Author(s):  
Feng Cao ◽  
Yongming Li

This work solves the stability problem of a vehicle suspension with stochastic disturbance by designing an adaptive controller. The model of a quarter vehicle subjected to noise excitation is considered. The stochastic perturbance is realized by the roughness of the road and the vehicle moving with constant velocity. In the control design procedure, fuzzy logic systems are used to approximate unknown nonlinear functions. Meanwhile, the mean value theorem is employed to ensure the existence of the affine virtual control variables and control input. The backstepping technique is applied to construct the ideal controller. On the basis of Lyapunov stability theory, the proposed control method proves that the displacement and speed of the vehicle is reduced to a level ascertained by a true “desired” conceptual suspension reference model. Finally, the effectiveness of the proposed method is verified by simulation of electromagnetic actuator servo system.



2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Junwei Sun ◽  
Yi Shen ◽  
Guangzhao Cui

The chaotic complex system is designed from the start of the chaotic real system. Dynamical properties of a chaotic complex system in complex space are investigated. In this paper, a compound synchronization scheme is achieved for four chaotic complex systems. According to Lyapunov stability theory and the adaptive control method, four chaotic complex systems are considered and the corresponding controllers are designed to realize the compound synchronization scheme. Four novel design chaotic complex systems are given as an example to verify the validity and feasibility of the proposed control scheme.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Wang ◽  
Peng Shi ◽  
Hamid Reza Karimi ◽  
Cheng Chew Lim

This paper considers the sliding mode control problem for a kind of dynamic delay system. First by utilizing Lyapunov stability theory and a linear matrix inequality technique, an observer based on delayed output feedback is constructed. Then, an integral sliding surface is presented to realize the sliding mode control for the system with the more available stability condition. Finally, some numerical simulations are implemented to demonstrate the validity of the proposed control method.



Author(s):  
Sara Gholipour ◽  
Heydar Toosian Shandiz ◽  
Mobin Alizadeh ◽  
Sara Minagar ◽  
Javad Kazemitabar

Background & Objective: This paper considers the chattering problem of sliding mode control in the presence of delay in robot manipulator causing chaos in such electromechanical systems. Fractional calculus was used in order to produce a novel sliding mode to eliminate chatter. To realize the control of a class of chaotic systems in master-slave configuration, a novel fractional dynamic sliding mode control scheme is presented and examined on the delay based chaotic robot. Also, the stability of the closed-loop system is guaranteed by Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Results: Moreover, delayed robot motions are sorted out for qualitative and quantitative study. Finally, numerical simulations illustrate feasibility of the proposed control method. Conclusion: The control scheme is viable.



Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Lixin Gao ◽  
Hui Fang ◽  
Wenhai Chen ◽  
He Cao

In this paper, the concept of consensus is generalized to weighted consensus, by which the conventional consensus, the bipartite consensus, and the cluster consensus problems can be unified in the proposed weighted consensus frame. The dynamics of agents are modeled by the general linear time-invariant systems. The interaction topology is modeled by edge- and node-weighted directed graphs. Under both state feedback and output feedback control strategies, the weighted consensus problems are transformed into the equivalent conventional consensus problems. Then, some distributed state feedback and output feedback protocols are proposed to solve the weighted consensus problems. For output feedback case, a unified frame to construct the state-observer-based weighted consensus protocols is proposed, and different design approaches are discussed. As special cases, some related results for bipartite consensus and cluster consensus can be obtained directly. Finally, a simple example is given to illustrate the effectiveness of our proposed approaches.



2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hang-Hong Kuo ◽  
Teh-Lu Liao ◽  
Jun-Juh Yan

Horizontal platform system (HPS) is one of the mechanical systems with rich behavior and has extensively been applied in offshore and earthquake engineering. A corresponding electronic HPS is proposed in this paper to reduce the research cost and time when studying dynamics of the mechanical HPS. Furthermore, an output feedback controller is proposed for global synchronization between coupled electronic HPS systems and its stability condition is also derived by employing the Lyapunov stability theory. The experimental simulations verify the dynamics of the proposed electronic HPS and the synchronization effectiveness of the proposed control scheme.



Automatica ◽  
2021 ◽  
Vol 127 ◽  
pp. 109545
Author(s):  
Yafeng Li ◽  
Ju H. Park ◽  
Changchun Hua ◽  
Guopin Liu


Author(s):  
Siti Nurfarihah Sheikh Hanis ◽  
Ahmad Sadhiqin Mohd Isira ◽  
Azdiana Md Yusop ◽  
Mohd Hendra Hairi ◽  
Wong Chunyan ◽  
...  

<p>This paper studies the containment control problem of the leader-follower configuration in a multi-agents system included with a type of nonlinearity such as Lipschitz with respect to continuous-time and directed spanning forest communication network topology. A state feedback containment controller is designed and proposed with control theory and the Laplacian network structure where it utilizes the relative information of each agent. The controller designed ensures that the followers are contained by the leaders that form the convex hull formation. For the containment to happen, a minimum of one leader is needed to have a direct communication trajectory to the followers. Lyapunov stability theory is used to provide the stability conditions after analyzing the network structure. Finally, it has been shown from simulation that the followers are contained successfully with the proposed controller.</p>



Sign in / Sign up

Export Citation Format

Share Document