scholarly journals Task Classification Based Energy-Aware Consolidation in Clouds

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
HeeSeok Choi ◽  
JongBeom Lim ◽  
Heonchang Yu ◽  
EunYoung Lee

We consider a cloud data center, in which the service provider supplies virtual machines (VMs) on hosts or physical machines (PMs) to its subscribers for computation in an on-demand fashion. For the cloud data center, we propose a task consolidation algorithm based on task classification (i.e., computation-intensive and data-intensive) and resource utilization (e.g., CPU and RAM). Furthermore, we design a VM consolidation algorithm to balance task execution time and energy consumption without violating a predefined service level agreement (SLA). Unlike the existing research on VM consolidation or scheduling that applies none or single threshold schemes, we focus on a double threshold (upper and lower) scheme, which is used for VM consolidation. More specifically, when a host operates with resource utilization below the lower threshold, all the VMs on the host will be scheduled to be migrated to other hosts and then the host will be powered down, while when a host operates with resource utilization above the upper threshold, a VM will be migrated to avoid using 100% of resource utilization. Based on experimental performance evaluations with real-world traces, we prove that our task classification based energy-aware consolidation algorithm (TCEA) achieves a significant energy reduction without incurring predefined SLA violations.

2014 ◽  
Vol 513-517 ◽  
pp. 2031-2034
Author(s):  
Hui Zhang ◽  
Yong Liu

Virtual machine migration is an effective method to improve the resource utilization of cloud data center. The common migration methods use heuristic algorithms to allocation virtual machines, the solution results is easy to fall into local optimal solution. Therefore, an algorithm called Migrating algorithm based on Genetic Algorithm (MGA) is introduced in this paper, which roots from genetic evolution theory to achieve global optimal search in the map of virtual machines to target nodes, and improves the objective function of Genetic Algorithm by setting the resource utilization of virtual machine and target node as an input factor into the calculation process. There is a contrast between MGA, Single Threshold (ST) and Double Threshold (DT) through simulation experiments, the results show that the MGA can effectively reduce migrations times and the number of host machine used.


2020 ◽  
Vol 32 (3) ◽  
pp. 23-36
Author(s):  
Kanniga Devi R. ◽  
Murugaboopathi Gurusamy ◽  
Vijayakumar P.

A Cloud data center is a network of virtualized resources, namely virtualized servers. They provision on-demand services to the source of requests ranging from virtual machines to virtualized storage and virtualized networks. The cloud data center service requests can come from different sources across the world. It is desirable for enhancing Quality of Service (QoS), which is otherwise known as a service level agreement (SLA), an agreement between cloud service requester and cloud service consumer on QoS, to allocate the cloud data center closest to the source of requests. This article models a Cloud data center network as a graph and proposes an algorithm, modified Breadth First Search where the source of requests assigned to the Cloud data centers based on a cost threshold, which limits the distance between them. Limiting the distance between Cloud data centers and the source of requests leads to faster service provisioning. The proposed algorithm is tested for various graph instances and is compared with modified Voronoi and modified graph-based K-Means algorithms that they assign source of requests to the cloud data centers without limiting the distance between them. The proposed algorithm outperforms two other algorithms in terms of average time taken to allocate the cloud data center to the source of requests, average cost and load distribution.


Author(s):  
Md. Nahid Hasan Shuvo ◽  
Md. Nahid Hasan Shuvo ◽  
Mirza Mohd Shahriar Maswood ◽  
Mirza Mohd Shahriar Maswood ◽  
Abdullah G. Alharbi ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xialin Liu ◽  
Junsheng Wu ◽  
Gang Sha ◽  
Shuqin Liu

Cloud data centers consume huge amount of electrical energy bringing about in high operating costs and carbon dioxide emissions. Virtual machine (VM) consolidation utilizes live migration of virtual machines (VMs) to transfer a VM among physical servers in order to improve the utilization of resources and energy efficiency in cloud data centers. Most of the current VM consolidation approaches tend to aggressive-migrate for some types of applications such as large capacity application such as speech recognition, image processing, and decision support systems. These approaches generate a high migration thrashing because VMs are consolidated to servers according to VM’s instant resource usage without considering their overall and long-term utilization. The proposed approach, dynamic consolidation with minimization of migration thrashing (DCMMT) which prioritizes VM with high capacity, significantly reduces migration thrashing and the number of migrations to ensure service-level agreement (SLA) since it keeps VMs likely to suffer from migration thrashing in the same physical servers instead of migrating. We have performed experiments using real workload traces compared to existing aggressive-migration-based solutions; through simulations, we show that our approach improves migration thrashing metric by about 28%, number of migrations metric by about 21%, and SLAV metric by about 19%.


2013 ◽  
Vol 325-326 ◽  
pp. 1730-1733 ◽  
Author(s):  
Si Yuan Jing ◽  
Shahzad Ali ◽  
Kun She

Numerous part of the energy-aware resource provision research for cloud data center just considers how to maximize the resource utilization, i.e. minimize the required servers, without considering the overhead of a virtual machine (abbreviated as a VM) placement change. In this work, we propose a new method to minimize the energy consumption and VM placement change at the same time, moreover we also design a network-flow-theory based approximate algorithm to solve it. The simulation results show that, compared to existing work, the proposed method can slightly decrease the energy consumption but greatly decrease the number of VM placement change


Sign in / Sign up

Export Citation Format

Share Document