scholarly journals CACNA1B (Cav2.2) Overexpression and Its Association with Clinicopathologic Characteristics and Unfavorable Prognosis in Non-Small Cell Lung Cancer

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoyu Zhou ◽  
Wei Wang ◽  
Shu Zhang ◽  
Xudong Wang ◽  
Zhiyuan Tang ◽  
...  

CACNA1B (Cav2.2) encodes an N-type voltage-gated calcium channel (VGCC) ubiquitously expressed in brain and peripheral nervous system that is important for regulating neuropathic pain. Because intracellular calcium concentration is a key player in cell proliferation and apoptosis, VGCCs are implicated in tumorigenesis. Recent studies have identified CACNA1B (Cav2.2) being overexpressed in prostate and breast cancer tissues when compared to adjacent normal tissues; however, its role in non-small cell lung cancer (NSCLC) has not been investigated. In this study, we determined the mRNA and protein expression of CACNA1B (Cav2.2) in NSCLC tumorous and adjacent nontumorous tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC), respectively. CACNA1B (Cav2.2) protein expressions in tumorous tissues were correlated with NSCLC patients’ clinical characteristics and overall survival. CACNA1B (Cav2.2) mRNA and protein expression levels were higher in NSCLC tumorous tissues than in nontumorous tissues. High CACNA1B (Cav2.2) protein expression was associated with higher TNM stages, and CACNA1B (Cav2.2) protein expression is an independent prognostic marker in NSCLC. Based on our results, we conclude that CACNA1B (Cav2.2) plays a role in NSCLC development and progression. Elucidating the underlying mechanism may help design novel treatment by specifically targeting the calcium regulation pathway for NSCLC, a devastating disease with increasing incidence and mortality in China.

2019 ◽  
Vol 145 (9) ◽  
pp. 2285-2292 ◽  
Author(s):  
Jenny Hötzel ◽  
Nathaniel Melling ◽  
Julia Müller ◽  
Adam Polonski ◽  
Gerrit Wolters-Eisfeld ◽  
...  

Lung Cancer ◽  
2005 ◽  
Vol 49 ◽  
pp. S290 ◽  
Author(s):  
E. Conde ◽  
R. García Luján ◽  
A. López Encuentra ◽  
L. Sánchez ◽  
M. Sánchez-Céspedes ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (50) ◽  
pp. 82104-82111 ◽  
Author(s):  
Yayi He ◽  
Paul A. Bunn ◽  
Caicun Zhou ◽  
Dan Chan

2021 ◽  
Author(s):  
Lingyun Dong ◽  
Jiangnan Zheng ◽  
Zhiyu Bai ◽  
Yanfang Lu ◽  
Weizhen Song ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer and has a high incidence and mortality rate. The combination of radiotherapy and chemotherapy is used widely to treat locally advanced NSCLC, but the clinical efficacy is limited. MiRNA-483-5p has been connected to the improvement of an assortment of malignancies. Notwithstanding, its capacity in NSCLC stays obscure. Methods: Here we utilized benefit- or loss-of-miRNA-483-5p expression to investigate the effect of miRNA-483-5p on NSCLC. Results: The results showed that MiRNA-483-5p is entirely up-regulated in NSCLC tissues and cell lines. MiRNA-483-5p inhibitor blocked cell viability, proliferation, migration, invasion but promoted apoptosis, suggesting miRNA-483-5p acts as an oncogene in NSCLC. TargetScan predicted that HIPK2 was an objective gene of miRNA-483-5p. Then, luciferase reporter assay further confirmed that miRNA-483-5p specifically attacked HIPK2’s 3’UTR, suggesting the targeted relationship between miRNA-483-5p and HIPK2. Moreover, HIPK2 acted as a redox signal modulator and was associated with a variety of malignant tumors. The current examination affirmed the low HIPK2 expression in the NSCLC tissues and cell lines. Moreover, overexpression of HIPK2 inhibited NSCLC cell viability, proliferation, migration, invasion, but enhanced apoptosis. More importantly, co-transfection with HIPK2 and miRNA-483-5p reversed these effects, suggesting that miRNA-483-5p facilitated tumor progression by inhibiting HIPK2. Conclusions: Hence, our findings indicated that miRNA-483-5p might be a promising remedial target in NSCLC and give major premise to clinical therapeutics.


2021 ◽  
Author(s):  
Longxia Dai ◽  
Quanwen Deng ◽  
Aibin Liu ◽  
Shuya He ◽  
Qiong Chen ◽  
...  

Abstract Background Lung cancer is a common malignant tumour and the leading cause of cancer death. Smoking is closely related to lung cancer, which can not only induce the occurrence of lung cancer but also affect its progress and prognosis. Objectives To investigated the relationship between smoking and 14-3-3σ protein expression in non-small-cell lung cancer (NSCLC), investigated the relationship between 14-3-3σ expression and cell migration in A549 cells induced by cigarette smoke extract (CSE) and explored whether DNA methylation plays a role in the decreased expression of 14-3-3σ induced by CSE. Methods 14-3-3σ protein expression was examined by immunohistochemistry in 152 NSCLC tissue samples. In vitro experiments were divided into three groups: The current smoking group (CS), the ex-smoking group (ES) and the normal control group (NC). Cell transfection was used for 14-3-3σ protein overexpression. The mRNA and protein expression levels of 14-3-3σ were detected by RT-PCR and Western blotting, respectively. Cell migration was detected by Transwell and wound-healing assays, and the methylation of 14-3-3σ was detected by methylation-specific PCR. Results 14-3-3σ protein expression was decreased in NSCLC patients with a history of smoking. The expression of 14-3-3σ was decreased in A549 cells treated with CSE. The migration capacity of A549 cells treated with CSE was enhanced. DNA methylation in the cigarette smoke-treated A549 cells was higher than that in the untreated cells. Conclusion Cigarette smoke induced reduction of 14-3-3σ expression can promote the progression of non-small cell lung cancer.


Author(s):  
Haiping Xiao

Abstract Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Distant metastasis is thought to be one of the most important factors responsible for the failure of NSCLC therapy. MicroRNA-7-5p (miR-7-5p) has been demonstrated to be a tumor suppressor in breast cancer, hepatocarcinoma, prostate cancer and glioblastoma multiforme (GBM). However, its role in NSCLC is still not fully understood. This study evaluated the role of miR-7-5p in the progression of NSCLC and explored the underlying mechanism. Materials & methods The quantitative real-time PCR (qPCR), MTT, migration and invasion assays were used to evaluate the effects of miR-7-5p on the proliferation, migration and invasion of A549 and SPCA-1 cells. A tumor xenograft model was created to determine the effects of miR-7-5p on metastasis in vivo. The dual-luciferase reporter gene, neuro-oncological ventral antigen 2 (NOVA2) overexpression and western blotting assays were performed to explore the underlying mechanism. Results MiR-7-5p is downregulated in NSCLC tissues and lung cancer cell lines. It suppresses proliferation, migration, invasion and EMT marker expression in vitro and in vivo. Further study showed that miR-7-5p suppresses tumor metastasis of NSCLC by targeting NOVA2. Overexpression of NOVA2 attenuates the miR-7-5p-mediated inhibitory effect on lung cancer cells. Conclusion MiR-7-5p suppresses NSCLC metastasis. Targeting miR-7-5p may contribute to the success of NSCLC therapy.


Sign in / Sign up

Export Citation Format

Share Document