scholarly journals New Bridge Weigh-in-Motion System Using Piezo-Bearing

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jinkyo F. Choo ◽  
Dong-Ho Ha ◽  
Seok-Gi Chang ◽  
Dong-Ho Lee ◽  
Chang-Beck Cho

The traditional BWIM (bridge weigh-in-motion) system measures the deformation of the bridge by means of sensors and uses these measurements to estimate the characteristics of passing traffic by means of dedicated algorithms. However, the application of the BWIM system is subordinated to the type of superstructure, composition, geometry, materials, and shape of the bridge, the location of the strain sensors used in the system, and the need to calibrate the measured strain curve and of a precise model of the structure at hand. In order to be free from these constraints, this paper proposes a simpler BWIM system using the bridge bearings as a weighing scale to measure the reaction forces at the supports resulting from the passing traffic. To that goal, the piezocomposite element known for its durability and responsiveness to external loading is embedded appropriately in the bridge bearing to achieve the piezo-bearing. This paper presents the BWIM system constituted by the so-called piezo-bearing, the results of a series of tests conducted to verify the responsiveness of the system to external dynamic excitation, and a numerical example to validate the feasibility of the proposed BWIM system. The numerical example shows that the identification of the characteristics of the vehicle crossing the bridge can be realized based simply upon the theory of mechanics using the time histories of the measured reaction forces instead of the deformation of the bridge.

2021 ◽  
Vol 11 (2) ◽  
pp. 745
Author(s):  
Sylwia Stawska ◽  
Jacek Chmielewski ◽  
Magdalena Bacharz ◽  
Kamil Bacharz ◽  
Andrzej Nowak

Roads and bridges are designed to meet the transportation demands for traffic volume and loading. Knowledge of the actual traffic is needed for a rational management of highway infrastructure. There are various procedures and equipment for measuring truck weight, including static and in weigh-in-motion techniques. This paper aims to compare four systems: portable scale, stationary truck weigh station, pavement weigh-in-motion system (WIM), and bridge weigh-in-motion system (B-WIM). The first two are reliable, but they have limitations as they can measure only a small fraction of the highway traffic. Weigh-in-motion (WIM) measurements allow for a continuous recording of vehicles. The presented study database was obtained at a location that allowed for recording the same traffic using all four measurement systems. For individual vehicles captured on a portable scale, the results were directly compared with the three other systems’ measurements. The conclusion is that all four systems produce the results that are within the required and expected accuracy. The recommendation for an application depends on other constraints such as continuous measurement, installation and operation costs, and traffic obstruction.


2013 ◽  
Vol 432 ◽  
pp. 275-280 ◽  
Author(s):  
Dong Ho Ha ◽  
Jinkyo F. Choo ◽  
Chang Hyung Lee ◽  
Won Seo Jang ◽  
Nam Seo Goo

A multi-functional bridge bearing with built-in piezocomposite electricity generating element (PCGE) is being developed by our research team to respond to the growing demand of self-powered sensing devices for the monitoring of bridges by harvesting the energy produced by the traffic-induced vibrations. For the intended application, a multilayered piezoelectric PCGE structure composed of layers of piezoceramic, glass/epoxy, and carbon/epoxy, has been developed to improve the durability, output voltage and power of the piezoceramic. The output voltage of this PCGE can be used for real-time traffic monitoring like in bridge-weigh-in-motion systems and can eventually be exploited to generate the electricity needed for the lighting and functioning of other embedded sensors. This paper presents the results of the dynamic loading tests conducted on a prototype of the proposed multi-functional bridge bearing to enhance its design details and verify the accuracy of the measurement. The results show that the bearing provides reliable measurement for traffic monitoring and enable to conceive details for the improvement of the output voltage of the PCGE. Since bridge bearings, as indispensable devices transferring the loads and movements from the deck to the substructure and foundations of the bridge, are continuously subjected to traffic loads, the proposed bridge bearing appears to be a natural and economic solution that can be applied to existing or newly built bridges without modification of the conventional design while providing additional and valuable functions for the maintenance of the structure.


2003 ◽  
Vol 31 (6) ◽  
pp. 11686 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
P McNulty ◽  
EJ O'Brien

2013 ◽  
Vol 8 (4) ◽  
pp. 263-270 ◽  
Author(s):  
Eugene J OBrien ◽  
Arturo González ◽  
Jason Dowling ◽  
Aleš Žnidarič

2020 ◽  
Vol 10 (14) ◽  
pp. 4708 ◽  
Author(s):  
Donya Hajializadeh ◽  
Aleš Žnidarič ◽  
Jan Kalin ◽  
Eugene John OBrien

This study describes the development and testing of a railway bridge weigh-in-motion (RB-WIM) system. The traditional bridge WIM (B-WIM) system developed for road bridges was extended here to calculate the weights of railway carriages. The system was tested using the measured response from a test bridge in Poland, and the accuracy of the system was assessed using statically-weighed trains. To accommodate variable velocity of the trains, the standard B-WIM algorithm, which assumes a constant velocity during the passage of a vehicle, was adjusted and the algorithm revised accordingly. The results showed that the vast majority of the calculated carriage weights fell within ±5% of their true, statically-weighed values. The sensitivity of the method to the calibration methods was then assessed using regression models, trained by different combinations of calibration trains.


Sign in / Sign up

Export Citation Format

Share Document