scholarly journals Finite-Time Bounded Tracking Control for Linear Discrete-Time Systems

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fucheng Liao ◽  
Yingxue Wu ◽  
Xiao Yu ◽  
Jiamei Deng

A finite-time bounded tracking control problem for a class of linear discrete-time systems subject to disturbances is investigated. Firstly, by applying a difference method to constructing the error system, the problem is transformed into a finite-time boundedness problem of the output vector of the error system. In fact, this is a finite-time boundedness problem with respect to the partial variables. Secondly, based on the partial stability theory and the research methods of finite-time boundedness problem, a state feedback controller formulated in form of linear matrix inequality is proposed. Based on this, a finite-time bounded tracking controller of the original system is obtained. Finally, a numerical example is presented to illustrate the effectiveness of the controller.

Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Yong-Hong Lan ◽  
Jun-Jun Xia ◽  
Yue-Xiang Shi

In this paper, a robust guaranteed-cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, a repetitive controller, combined with preview compensator, is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed-cost preview repetitive control problem is transformed into a guaranteed-cost control problem for the augmented dynamic system. For a given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by using a parameter-dependent Lyapunov function method and linear matrix inequality (LMI) techniques. Incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included, to show the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Li Li ◽  
Fucheng Liao

A preview controller design method for discrete-time systems based on LMI is proposed. First, we use the difference between a system state and its steady-state value, instead of the usual difference between system states, to transform the tracking problem into a regulator problem. Then, based on the Lyapunov stability theory and linear matrix inequality (LMI) approach, the preview controller ensuring asymptotic stability of the closed-loop system for the derived augmented error system is found. And an extended functional observer is designed in this paper which can achieve disturbance attenuation in the estimation process; as a result, the state of the system can be reconstructed rapidly and accurately. The controller gain matrix is obtained by solving an LMI problem. By incorporating the controller obtained into the original system, we obtain the preview controller of the system under consideration. To make sure that the output tracks the reference signal without steady-state error, an integrator is introduced. The numerical simulation example also illustrates the effectiveness of the results in the paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Yingqi Zhang ◽  
Wei Cheng ◽  
Xiaowu Mu ◽  
Caixia Liu

This paper investigates the stochastic finite-time stabilization andℋ∞control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochasticℋ∞finite-time boundedness and then state feedback controllers are designed to guarantee stochasticℋ∞finite-time stabilization of the class of stochastic systems. The stochasticℋ∞finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.


Author(s):  
Yong-Hong Lan ◽  
Xia Jun-Jun

A robust guaranteed cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, the repetitive controller combined with preview compensator is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed cost preview repetitive control problem is transformed into the guaranteed cost control problem for the augmented dynamic system. For given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by combining parameter-dependent Lyapunov function method with linear matrix inequality (LMI) techniques. By incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included to show the effectiveness of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fucheng Liao ◽  
Yujian Guo

This paper studies the disturbance preview optimal control problem for discrete-time systems with multirate output sampling. By constructing the error system and using the discrete lifting technique, we reduce the multirate preview control problem to a single-rate one for a formal augmented system. Then, applying preview control theory, the optimal preview control law of the augmented error system is obtained. Meanwhile, we introduce a discrete integrator to eliminate the static error. Then we study a method to design a controller with preview action for the original system. And the existence conditions of the controller are also discussed in detail. Finally, numerical simulation is included to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document