scholarly journals The GUP Effect on Tunneling of Massive Vector Bosons from The 2+1 Dimensional Black Hole

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this study, the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation formed by tunneling of a massive vector boson particle from the 2+1 dimensional new-type black hole was investigated. We used modified massive vector boson equation based on the GUP. Then, the Hamilton-Jacobi quantum tunneling approach was used to work out the tunneling probability of the massive vector boson particle and Hawking temperature of the black hole. Due to the GUP effect, the modified Hawking temperature was found to depend on the black hole properties, on the AdS3 radius, and on the energy, mass, and total angular momentum of the tunneling massive vector boson. In the light of these results, we also observed that modified Hawking temperature increases by the total angular momentum of the particle while it decreases by the energy and mass of the particle and the graviton mass. Also, in the context of the GUP, we see that the Hawking temperature due to the tunneling massive vector boson is completely different from both that of the spin-0 scalar and that of the spin-1/2 Dirac particles obtained in the previous study. We also calculate the heat capacity of the black hole using the modified Hawking temperature and then discuss influence of the GUP on the stability of the black hole.

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

Abstract The quantum gravity correction to the Hawking temperature of the 2+1 dimensional spinning dilaton black hole is studied by using the Hamilton-Jacobi approach in the context of the Generalized Uncertainty Principle (GUP). It is observed that the modified Hawking temperature of the black hole depends on both black hole and the tunnelling particle properties. Moreover, it is observed that the mass and the angular momentum of the scalar particle have the same effect on the Hawking temperature of the black hole, while the mass and total angular momentum (orbital+spin) of Dirac particle have different effect. Furthermore, the mass and total angular momentum (orbital+spin) of vector boson particle have a similar effect that of Dirac particle. Also, thermodynamical stability and phase transition of the black hole are discussed for scalar, Dirac and vector boson in the context of GUP, respectively. And, it is observed that the scalar particle probes the black hole as stable whereas, as for Dirac and vector boson particles, it might undergoes second-type phase transition to become stable while in the absence of the quantum gravity effect all of these particle probes the black hole as stable.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

We investigate the generalized uncertainty principle (GUP) effect on the Hawking temperature for the 2 + 1-dimensional new-type black hole by using the quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar particles. In computation of the GUP correction for the Hawking temperature of the black hole, we modified Dirac and Klein-Gordon equations. We observed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the graviton mass and the intrinsic properties of the tunneling particle, such as total angular momentum, energy, and mass. Also, we see that the Hawking temperature was found to be probed by these particles in different manners. The modified Hawking temperature for the scalar particle seems low compared with its standard Hawking temperature. Also, we find that the modified Hawking temperature of the black hole caused by Dirac particle’s tunneling is raised by the total angular momentum of the particle. It is diminishable by the energy and mass of the particle and graviton mass as well. These intrinsic properties of the particle, except total angular momentum for the Dirac particle, and graviton mass may cause screening for the black hole radiation.


Author(s):  
Wajiha Javed ◽  
Riasat Ali ◽  
Rimsha Babar ◽  
Ali Övgün

This paper is devoted to investigate charged vector particles tunneling via horizons of a pair of accelerating rotating charged NUT black hole under the influence of quantum gravitational effects. For this purpose, we use the modified Proca equation incorporating generalized uncertainty principle. Using the WKB approximation to the field equation, we obtain a modified tunneling rate and the corresponding corrected Hawking temperature for this black hole. Moreover, we analyze the graphical behavior of corrected Hawking temperature T'H with respect to the event horizon for the given black hole. By considering quantum gravitational effects on Hawking temperatures, we discuss the stability analysis of this black hole. For a pair of black holes, the temperature T'H increases with the increase in rotation parameters α and w, correction parameter β, black hole acceleration α and arbitrary parameter k and decreases with the increase in electric e and magnetic charges g.


2021 ◽  
pp. 2150137
Author(s):  
Shahid Chaudhary ◽  
Abdul Jawad ◽  
Kimet Jusufi ◽  
Muhammad Yasir

This paper explores the influence of special type of higher order generalized uncertainty principle on the thermodynamics of five-dimensional black hole in Einstein–Gauss–Bonnet gravity coupled to nonlinear electrodynamics. We examine the corrected thermodynamical properties of the black hole with some interesting limiting cases [Formula: see text] and [Formula: see text] and compared our results with usual thermodynamical relations. We observe that the influence of GUP correction stabilizes the BH and BH solution remains physical throughout the region of horizon radius. In this framework, we also uncover the relationship of shadow radius and quasinormal modes of the mentioned black hole. We conclude that shadow radius of our considered black hole is a perfect circle and it decreases with increasing values of charge and Gauss–Bonnet parameter. We also verify the inverse relation between the quasinormal modes frequencies and shadow radius, i.e. quasinormal modes should increase with increasing values of Gauss–Bonnet parameter and electric charge.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

We carry out the Hawking temperature of a 2+1-dimensional circularly symmetric traversable wormhole in the framework of the generalized uncertainty principle (GUP). Firstly, we introduce the modified Klein-Gordon equation of the spin-0 particle, the modified Dirac equation of the spin-1/2 particle, and the modified vector boson equation of the spin-1 particle in the wormhole background, respectively. Given these equations under the Hamilton-Jacobi approach, we analyze the GUP effect on the tunneling probability of these particles near the trapping horizon and, subsequently, on the Hawking temperature of the wormhole. Furthermore, we have found that the modified Hawking temperature of the wormhole is determined by both wormhole’s and tunneling particle’s properties and indicated that the wormhole has a positive temperature similar to that of a physical system. This case indicates that the wormhole may be supported by ordinary (nonexotic) matter. In addition, we calculate the Unruh-Verlinde temperature of the wormhole by using Kodama vectors instead of time-like Killing vectors and observe that it equals to the standard Hawking temperature of the wormhole.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Nasrin Farahani ◽  
Hassan Hassanabadi ◽  
Jan Kříž ◽  
Won Sang Chung ◽  
Saber Zarrinkamar

Abstract In this paper, by studying the COW experiment and the Einstein Bohr’s photon box, we investigate the associated modified phase shift and Hawking temperature. Next, we comment on the effective Newton constant suggested by the doubly special relativity based on the generalized uncertainty principle.


1996 ◽  
Vol 11 (18) ◽  
pp. 1467-1473 ◽  
Author(s):  
MAKOTO NATSUUME ◽  
NORISUKE SAKAI ◽  
MASAMICHI SATO

The SL (2, R)/Z WZW orbifold which describes the (2+1)-dimensional black hole approaching anti-de Sitter space asymptotically. We study the 1 → 1 tachyon scattering off the rotating black hole background and calculate the Hawking temperature using the Bogoliubov transformation.


2007 ◽  
Vol 22 (08n09) ◽  
pp. 1627-1648 ◽  
Author(s):  
A. BOUCHAREB ◽  
M. RAMÓN MEDRANO ◽  
N. G. SÁNCHEZ

Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr–Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr–Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature T sem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr–Newman black hole with mass M > m Pl , angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α′c), a new phase transition at a temperature [Formula: see text], higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy S sem (M, J), as a function of the usual Bekenstein–Hawking entropy [Formula: see text]. For M ≫ m Pl and J < GM2/c, [Formula: see text] is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy S sem is drastically different from the Bekenstein–Hawking entropy [Formula: see text]. This new extremal black hole transition occurs at a temperature T sem J = (J/ℏ)T sem , higher than the Hawking temperature T sem .


Sign in / Sign up

Export Citation Format

Share Document