scholarly journals Behaviour of Foam Concrete under Impact Loading Based on SHPB Experiments

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yongliang He ◽  
Mingshi Gao ◽  
Hongchao Zhao ◽  
Yichao Zhao

This paper presents an innovative method for using foam concrete as a typical building material for soft structures in underground coal mines subjected to dynamic loading. To understand the behaviour of foam concrete under impact loading, a total of 30 specimens with a diameter of 50 mm and a height of 50 mm were experimentally tested using a 75 mm diameter split Hopkinson pressure bar (SHPB) device. The key parameters investigated in the present study included the type of foam concrete (fly ash and sand), the density of foam concrete (1000, 1200 and 1400 kg/m3), and the impact velocity (3.0, 4.0, 5.0, 6.0, and 7.0 m/s). Six specimens were also tested under static loading for comparison. The stress-strain curve of foam concrete under impact loading showed three stages, started with a linear elastic stage, followed by a yield stage and ended with a pore wall destruction stage. The test results also indicated that the dynamic increase factor, ultimate compressive strength, tenacity, and specific energy absorption increase with the strain rate under the same density. In particular, both the failure model and the behaviour of foam concrete were affected by the impact velocity. The findings of this research provide a reference for further research on the application of foam concrete in underground coal mines.

2021 ◽  
Vol 11 (21) ◽  
pp. 9882
Author(s):  
Jiangping Chen ◽  
Weijun Tao ◽  
Shumeng Pang

In this study, a total of 30 3D re-entrant honeycomb specimens made of polyamide were fabricated with various configurations by using the additive manufacturing (AM) technique. Split Hopkinson Pressure Bar (SHPB) tests were conducted on the RH specimens at different impact velocities. The incident, reflected and transmitted waveforms can well explain the wave propagation and energy absorption characteristics of the specimens, which can help us to understand and analyse the process of impact loading. The stress–strain curves, energy absorption ability and failure modes of SHPB tests with different impact velocities and quasi-static compression tests were analysed and compared, and it was found that the flow stress and energy absorption ability of the specimens subjected to impact load were much improved. Among the tested specimens, specimen C2, with a smaller re-entrant angle θ, displayed the best energy absorption ability, which was 1.701 J/cm3 at the impact velocity of 22 m/s and was 5.1 times that in the quasi-static test. Specimen C5 had the longest horizontal length of the diagonal bar L0, and its energy absorption was 1.222 J/cm3 at the impact velocity of 22 m/s and was 15.7 times that in the quasi-static test, reflecting the superiority of a structurally stable specimen in energy absorption under impact loading. The test results can provide a reference for the optimization of the design of the same or similar structures.


2019 ◽  
Vol 9 (23) ◽  
pp. 4987 ◽  
Author(s):  
Yu-Lei Bai ◽  
Zhi-Wei Yan ◽  
Togay Ozbakkaloglu ◽  
Jian-Guo Dai ◽  
Jun-Feng Jia ◽  
...  

Polyethylene terephthalate (PET) fiber has attracted significant attention for reinforced concrete (RC) structure rehabilitation due to its large rupture strain (LRS; more than 7%) characteristic and recyclability from waste plastic bottles. This study presents a dynamic tensile test of PET fiber bundles performed using a drop-weight impact system. Results showed that the tensile strength and the elastic modulus of the PET fiber bundles increased, whereas the failure strain and the toughness decreased with the increasing strain rate from 1/600 to 160 s−1. In addition, the performance of concrete confined with the PET fiber-reinforced polymer (FRP) under impact loading was investigated based on a 75 mm-diameter split Hopkinson pressure bar (SHPB) device and a drop-weight apparatus. For the SHPB test, owing to the large rupture strain property of PET FRP, the PET FRP-confined concrete exhibited significantly better performance under impact loading compared to its counterpart confined with carbon FRPs (CFRPs). During the drop-weight test, the confinement of the PET FRP composites to the concrete columns as external jackets not only improved the peak impact force, but also prolonged the impact process.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jin Yu ◽  
Zehan Liu ◽  
Ze He ◽  
Xianqi Zhou ◽  
Jinbi Ye

The propagation of stress waves in filled jointed rocks involves two important influencing factors: transmission-reflection phenomena and energy attenuation. In this paper, the split Hopkinson pressure bar (SHPB) test is used to shock the filled rock with joint angles of 0, 30, and 45° and the thickness of 4 mm and 10 mm, respectively, in three different velocities. The wave curves of the incident wave, reflected wave, and transmission are obtained. The effects of the filling angle and joint thickness on wave propagation are analyzed. Based on the propagation characteristics of stress waves in joints, the stress expression of oblique incident stress waves propagating in filling joints is derived, and the energy coefficient of transmission and reflection is calculated. The results show that the propagation of stress wave in filling joints is related to the impact rate. The larger the impact rate is, the larger the maximum voltage amplitude of the three waves is. And the increasing amplitude of the incident and reflected waves is larger than the transmitted wave; the greater the impact velocity is, the smaller the stress-strain curve gap of the three dip joints is, and the fracture strength of the specimen decreases with the increase of the joint dip angle. The larger the joint dip angle is, the smaller the deformation of the rock-like specimen is. The change of the transmission coefficient is related to the joint angle, and the larger joint angle weakens the influence of the joint width on the transmission of the transmitted wave; under each impact velocity, the theoretical and experimental stress peaks are approximately the same, and the transmission coefficient maintains a good consistency with the oblique incident angle.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haotian Zhang ◽  
Linjian Ma ◽  
Zongmu Luo ◽  
Ning Zhang

The propagation characteristics of viscoelastic waves have been investigated with a 6 mm diameter split Hopkinson pressure bar (SHPB) made of polymethyl methacrylate (PMMA). The strain signals in SHPB tests were improved by the pulse shaping technique. Based on the experimentally determined propagation coefficients, the amplitude attenuation and wave dispersion induced by viscoelastic effects at different impact velocities were quantitatively analyzed. The results indicate that the high-frequency harmonics attenuate faster in a higher phase velocity. With an increase in the impact velocity, the amplitude attenuation of the viscoelastic wave changes slightly during propagation, while the waveform dispersion gradually intensifies. A feasible method by waveform prediction was proposed to verify the validity and applicability of the propagation coefficient. The results indicate that the strain obtained from the small diameter viscoelastic SHPB can be effectively modified by utilizing the propagation coefficient. Furthermore, it is preferred to adopt the propagation coefficient obtained at low impact velocity for correction when the impact velocity varies. Moreover, the PMMA-steel bar impact test was performed to further illustrate the accuracy of the propagation coefficient and the effectiveness of the correction method.


2011 ◽  
Vol 228-229 ◽  
pp. 5-9
Author(s):  
Yong Xiang Dong ◽  
Chang Jing Xia ◽  
Li Xing Xiao ◽  
Shun Shan Feng

Dynamic impact experiments of man-made rock were carried out with the Split Hopkinson Pressure Bar (SHPB) apparatus in this paper. The impact process was analyzed and the influence of rock porosity on dynamic mechanical behavior was investigated. The stress-strain curves in rock were obtained by the one-dimensional stress wave theory. The curve lays foundation for numeric simulation of rock fracture under impact loading. The damage profiles of rock specimen under the impact loading show that the man-made rock exhibits obvious shear damage under the impact loading because it is a typical porous medium containing large quantities of defects such as pores, cracks and grain boundaries at the microscale. The experimental results also indicated that rock porosity plays an important role in dynamic mechanical behavior.


2014 ◽  
Vol 566 ◽  
pp. 548-553 ◽  
Author(s):  
Nobuhiko Kii ◽  
Takeshi Iwamoto ◽  
Alexis Rusinek ◽  
Tomasz Jankowiak

The split Hopkinson pressure bar (SHPB) technique is widely-used to describe the impact compressive behavior of different materials including metals. During the impact test, the specimen deforms in a wide range of impact strain rate from 102 to 104 s-1. It is a reason why the method is studied for many years even though the structure of the apparatus based on the SHPB is simple. Actually, the cylindrical specimens are widely used for a compressive test and it is clearly seen that stress measured by the test includes the increment of stress (an error) derived by friction effect between a specimen and pressure bars. Therefore, it is important that the measured stress should indicate similar value as the proper stress of the material by reducing friction effect during not only quasi-static but also the impact test. Various attempts to reduce a friction effect in past have been conducted. A method to reduce friction effect is in general a use of lubricants. However, it is ineffective because it can be considered that this method contributes to an attenuation of the stress wave for obtaining the stress-strain curve under impact loading. Thus, rise time of waves obtained by the experiment becomes longer compared with a case not to use lubricants. Recently, a study can be found using a ring specimen, however, the determined thickness of the specimen is quite thin and it can be considered that a buckling effect cannot be vanished. In this study, a use of hollow specimen is suggested to solve the problem related to reduce the friction effect by decreasing a contact area between a specimen and pressure bars instead of a cylindrical specimen. The compressive experiments at various strain rates are conducted by using a hollow specimen.


2013 ◽  
Vol 20 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Wojciech Moćko

Abstract The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Donghui Yang ◽  
Yixin Zhao ◽  
Zhangxuan Ning ◽  
Zhaoheng Lv ◽  
Huafeng Luo

Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.


Author(s):  
Yangqing Dou ◽  
Yucheng Liu ◽  
Wilburn Whittington ◽  
Jonathan Miller

Coefficients and constants of a microstructure-based internal state variable (ISV) plasticity damage model for pure copper have been calibrated and used for damage modeling and simulation. Experimental stress-strain curves obtained from Cu samples at different strain rate and temperature levels provide a benchmark for the calibration work. Instron quasi-static tester and split-Hopkinson pressure bar are used to obtain low-to-high strain rates. Calibration process and techniques are described in this paper. The calibrated material model is used for high-speed impact analysis to predict the impact properties of Cu. In the numerical impact scenario, a 100 mm by 100 mm Cu plate with a thickness of 10 mm will be penetrated by a 50 mm-long Ni rod with a diameter of 10mm. The thickness of 10 mm was selected for the Cu plate so that the Ni-Cu penetration through the thickness can be well observed through the simulations and the effects of the ductility of Cu on its plasticity deformation during the penetration can be displayed. Also, that thickness had been used by some researchers when investigating penetration mechanics of other materials. Therefore the penetration resistance of Cu can be compared to that of other metallic materials based on the simulation results obtained from this study. Through this study, the efficiency of this ISV model in simulating high-speed impact process is verified. Functions and roles of each of material constant in that model are also demonstrated.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7298
Author(s):  
Shumeng Pang ◽  
Weijun Tao ◽  
Yingjing Liang ◽  
Shi Huan ◽  
Yijie Liu ◽  
...  

Although highly desirable, the experimental technology of the dynamic mechanical properties of materials under multiaxial impact loading is rarely explored. In this study, a true-biaxial split Hopkinson pressure bar device is developed to achieve the biaxial synchronous impact loading of a specimen. A symmetrical wedge-shaped, dual-wave bar is designed to decompose a single stress wave into two independent and symmetric stress waves that eventually form an orthogonal system and load the specimen synchronously. Furthermore, a combination of ground gaskets and lubricant is employed to eliminate the shear stress wave and separate the coupling of the shear and axial stress waves propagating in bars. Some confirmatory and applied tests are carried out, and the results show not only the feasibility of this modified device but also the dynamic mechanical characteristics of specimens under biaxial impact loading. This novel technique is readily implementable and also has good application potential in material mechanics testing.


Sign in / Sign up

Export Citation Format

Share Document