scholarly journals A Morphological Filtering Method Based on Particle Swarm Optimization for Railway Vehicle Bearing Fault Diagnosis

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yan Huang ◽  
Jianhui Lin ◽  
Zechao Liu ◽  
Chenguang Huang

With the rapid development of high-speed railway, the fault diagnosis of railway vehicles has become more and more important for ensuring the operating safety. The MF is a nonlinear signal processing method which can extract the modulated faulty information via reshaping the analyzed signal. However, the choices of operators and structure elements (SE) are numerous and complicated to determine the best MF solution for different bearing faulty signals. In this paper, the particle swarm optimization (PSO) was introduced to optimize the effect of MF among several classical MF operators and different SE parameters. The proposed method applied PSO to select the best MF result with respect to the fitness function adopting kurtosis. A set of bearing signals with additional interference of wheel-track excitement are analyzed to verify the effectiveness of the proposed method. The results demonstrated that the proposed method is capable of obtaining the optimized solution and accurately extracting the fault information. Furthermore, the shaft rotation frequency and wheel-track interference were reduced by the proposed method.

Author(s):  
Arti Jain ◽  
Divakar Yadav ◽  
Anuja Arora

Particle swarm optimization (PSO) algorithm is proposed to deal with text summarization for the Punjabi language. PSO is based on intelligence that predicts among a given set of solutions which is the best solution. The search is carried out by extremely high-speed particles. It updates particle position and velocity at the end of iteration so that during the development of generations, the personal best solution and global best solution are updated. Calculation within PSO is performed using fitness function which looks into various statistical and linguistic features of the Punjabi datasets. Two Punjabi datasets—monolingual Punjabi corpus from Indian Languages Corpora Initiative Phase-II and Punjabi-Hindi parallel corpus—are considered. The parallel corpus comprises 1,000 Punjabi sentences from the tourism domain while monolingual corpus contains 30,000 Punjabi sentences of the general domain. ROUGE measures evaluate summary where the highest measure, ROUGE-1, is achieved for parallel corpus with precision, recall, and F-measure as 0.7836, 0.7957, and 0.7896, respectively.


2013 ◽  
Vol 32 (2) ◽  
pp. 432-435
Author(s):  
Zhi-min CHEN ◽  
Yu-ming BO ◽  
Pan-long WU ◽  
Meng-chu TIAN ◽  
Shao-xin LI ◽  
...  

Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


2012 ◽  
Vol 562-564 ◽  
pp. 1336-1339
Author(s):  
Hai Lun Wang ◽  
Jian Wei Shen

In this paper, a method for GIS equipment fault diagnosis by the analysis of volume fractions of the derivatives of SF6 gas inside GIS equipment is presented. For the method, based on the differential spectra method, a neural network model and the particle swarm optimization are used for training analysis of infrared spectra, to realize the quantitative analysis of specific derivatives. The experimental results show that the prediction errors obtained by particle swarm optimization training are markedly superior to prediction errors obtained using the traditional method.


2013 ◽  
Vol 756-759 ◽  
pp. 3804-3808
Author(s):  
Zhi Mei Duan ◽  
Jia Tang Cheng

In order to improve the accuracy of fault diagnosis of power transformer, in this paper, a method is proposed that optimize the weight of BP neural network by adaptive mutation particle swarm optimization (AMPSO). According to the characteristic of transformer fault, the optimized neural network is used to diagnose fault of the power transformer. Individual particles action is amended by this algorithm and local minima problems of the standard PSO and BP network are overcooked. The experimental results show that, the method can classify transformer faults, and effectively improve the fault recognition rate.


2011 ◽  
Vol 268-270 ◽  
pp. 934-939
Author(s):  
Xue Wen He ◽  
Gui Xiong Liu ◽  
Hai Bing Zhu ◽  
Xiao Ping Zhang

Aiming at improving localization accuracy in Wireless Sensor Networks (WSN) based on Least Square Support Vector Regression (LSSVR), making LSSVR localization method more practicable, the mechanism of effects of the kernel function for target localization based on LSSVR is discussed based on the mathematical solution process of LSSVR localization method. A novel method of modeling parameters optimization for LSSVR model using particle swarm optimization is proposed. Construction method of fitness function for modeling parameters optimization is researched. In addition, the characteristics of particle swarm parameters optimization are analyzed. The computational complexity of parameters optimization is taken into consideration comprehensively. Experiments of target localization based on CC2430 show that localization accuracy using LSSVR method with modeling parameters optimization increased by 23%~36% in compare with the maximum likelihood method(MLE) and the localization error is close to the minimum with different LSSVR modeling parameters. Experimental results show that adapting a reasonable fitness function for modeling parameters optimization using particle swarm optimization could enhance the anti-noise ability significantly and improve the LSSVR localization performance.


Sign in / Sign up

Export Citation Format

Share Document