scholarly journals A Robust Channel Estimation Scheme for 5G Massive MIMO Systems

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Imran Khan ◽  
Joel J. P. C. Rodrigues ◽  
Jalal Al-Muhtadi ◽  
Muhammad Irfan Khattak ◽  
Yousaf Khan ◽  
...  

Channel state information (CSI) feedback in massive MIMO systems is too large due to large pilot overhead. It is due to the large channel matrix dimension which depends on the number of base station (BS) antennas and consumes the majority of scarce radio resources. To solve this problem, we proposed a scheme for efficient CSI acquisition and reduced pilot overhead. It is based on the separation mechanism for the channel matrix. The spatial correlation among multiuser channel matrices in the virtual angular domain is utilized to split the channel matrix. Then, the two parts of the matrix are estimated by deploying the compressed sensing (CS) techniques. This scheme is novel in the sense that the user equipment (UE) directly transmits the received symbols from the BS to the BS, so a joint CSI recovery is performed at the BS. Simulation results show that the proposed channel estimation scheme effectively estimates the channel with reduced pilot overhead and improved performance as compared with the state-of-the-art schemes.

Author(s):  
Aditi Sharma ◽  
Ashish Kumar Sharma ◽  
Laxmi Narayan Balai

In this paper, we have optimize specificities with the use of massive MIMO in 5 G systems. Massive MIMO uses a large number, low cost and low power antennas at the base stations. These antennas provide benefit such as improved spectrum performance, which allows the base station to serve more users, reduced latency due to reduced fading power consumption and much more. By employing the lens antenna array, beam space MIMO can utilize beam selection to reduce the number of required RF chains in mm Wave massive MIMO systems without obvious performance loss. However, to achieve the capacity-approaching performance, beam selection requires the accurate information of beam space channel of large size, which is challenging, especially when the number of RF chains is limited. To solve this problem, in this paper we propose a reliable support detection (SD)-based channel estimation scheme. In this work we first design an adaptive selecting network for mm-wave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beam space channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of the mm-wave beam space channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beam space channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy even in the low SNR region as the structural characteristics of beam space channel can be exploited.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1061 ◽  
Author(s):  
Hedi Khammari ◽  
Irfan Ahmed ◽  
Ghulam Bhatti ◽  
Masoud Alajmi

In this paper, a joint spatio–radio frequency resource allocation and hybrid beamforming scheme for the massive multiple-input multiple-output (MIMO) systems is proposed. We consider limited feedback two-stage hybrid beamformimg for decomposing the precoding matrix at the base-station. To reduce the channel state information (CSI) feedback of massive MIMO, we utilize the channel covariance-based RF precoding and beam selection. This beam selection process minimizes the inter-group interference. The regularized block diagonalization can mitigate the inter-group interference, but requires substantial overhead feedback. We use channel covariance-based eigenmodes and discrete Fourier transforms (DFT) to reduce the feedback overhead and design a simplified analog precoder. The columns of the analog beamforming matrix are selected based on the users’ grouping performed by the K-mean unsupervised machine learning algorithm. The digital precoder is designed with joint optimization of intra-group user utility function. It has been shown that more than 50 % feedback overhead is reduced by the eigenmodes-based analog precoder design. The joint beams, users scheduling and limited feedbacK-based hybrid precoding increases the sum-rate by 27 . 6 % compared to the sum-rate of one-group case, and reduce the feedback overhead by 62 . 5 % compared to the full CSI feedback.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Athar Waseem ◽  
Aqdas Naveed ◽  
Sardar Ali ◽  
Muhammad Arshad ◽  
Haris Anis ◽  
...  

Massive multiple-input multiple-output (MIMO) is believed to be a key technology to get 1000x data rates in wireless communication systems. Massive MIMO occupies a large number of antennas at the base station (BS) to serve multiple users at the same time. It has appeared as a promising technique to realize high-throughput green wireless communications. Massive MIMO exploits the higher degree of spatial freedom, to extensively improve the capacity and energy efficiency of the system. Thus, massive MIMO systems have been broadly accepted as an important enabling technology for 5th Generation (5G) systems. In massive MIMO systems, a precise acquisition of the channel state information (CSI) is needed for beamforming, signal detection, resource allocation, etc. Yet, having large antennas at the BS, users have to estimate channels linked with hundreds of transmit antennas. Consequently, pilot overhead gets prohibitively high. Hence, realizing the correct channel estimation with the reasonable pilot overhead has become a challenging issue, particularly for frequency division duplex (FDD) in massive MIMO systems. In this paper, by taking advantage of spatial and temporal common sparsity of massive MIMO channels in delay domain, nonorthogonal pilot design and channel estimation schemes are proposed under the frame work of structured compressive sensing (SCS) theory that considerably reduces the pilot overheads for massive MIMO FDD systems. The proposed pilot design is fundamentally different from conventional orthogonal pilot designs based on Nyquist sampling theorem. Finally, simulations have been performed to verify the performance of the proposed schemes. Compared to its conventional counterparts with fewer pilots overhead, the proposed schemes improve the performance of the system.


Sign in / Sign up

Export Citation Format

Share Document