scholarly journals Weighted Endpoint Estimates for Commutators of Singular Integral Operators on Orlicz-Morrey Spaces

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jinyun Qi ◽  
Hongxia Shi ◽  
Wenming Li

In this paper, we obtain the weighted endpoint estimates for the commutators of the singular integral operators with the BMO functions and the associated maximal operators on Orlicz-Morrey Spaces. We also get the similar results for the commutators of the fractional integral operators with the BMO functions and the associated maximal operators.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Sha He ◽  
Xiangxing Tao

We study some multilinear operators with rough kernels. For the multilinear fractional integral operatorsTΩ,αAand the multilinear fractional maximal integral operatorsMΩ,αA, we obtain their boundedness on weighted Morrey spaces with two weightsLp,κ(u,v)whenDγA∈Λ˙β  (|γ|=m-1)orDγA∈BMO  (|γ|=m-1). For the multilinear singular integral operatorsTΩAand the multilinear maximal singular integral operatorsMΩA, we show they are bounded on weighted Morrey spaces with two weightsLp,κ(u,v)ifDγA∈Λ˙β  (|γ|=m-1)and bounded on weighted Morrey spaces with one weightLp,κ(w)ifDγA∈BMO  (|γ|=m-1)form=1,2.


2016 ◽  
Vol 146 (6) ◽  
pp. 1159-1166 ◽  
Author(s):  
Lucas Chaffee

We characterize bounded mean oscillation in terms of the boundedness of commutators of various bilinear singular integral operators with pointwise multiplication. In particular, we study commutators of a wide class of bilinear operators of convolution type, including bilinear Calderón–Zygmund operators and the bilinear fractional integral operators.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xiao Jin Zhang ◽  
Xian Ming Hou

We introduce one-sided Cohen’s commutators of singular integral operators and fractional integral operators, respectively. Using the extrapolation of one-sided weights, we establish the boundedness of these operators from weighted Lebesgue spaces to weighted one-sided Triebel-Lizorkin spaces.


2008 ◽  
Vol 15 (2) ◽  
pp. 353-376
Author(s):  
Yoshihiro Sawano ◽  
Satoru Shirai

Abstract We study multi-commutators on the Morrey spaces generated by BMO functions and singular integral operators or by BMO functions and fractional integral operators. We place ourselves in the setting of coming with a Radon measure μ which satisfies a certain growth condition. The Morrey-boundedness of commutators is established by M. Yan and D. Yang. However, the corresponding assertion of Morrey-compactness is still missing. The aim of this paper is to prove that the multi-commutators are compact if one of the BMO functions can be approximated with compactly supported smooth functions.


2009 ◽  
Vol 7 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Yasuo Komori ◽  
Katsuo Matsuoka

We consider the boundedness of singular integral operators and fractional integral operators on weighted Herz spaces. For this purpose we introduce generalized Herz space. Our results are the best possible.


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2009 ◽  
Vol 80 (2) ◽  
pp. 324-334 ◽  
Author(s):  
H. GUNAWAN ◽  
Y. SAWANO ◽  
I. SIHWANINGRUM

AbstractWe discuss here the boundedness of the fractional integral operatorIαand its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness ofIα, we employ the boundedness of the so-called maximal fractional integral operatorIa,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.


2019 ◽  
Vol 63 (1) ◽  
pp. 141-156
Author(s):  
Hiroki Saito ◽  
Hitoshi Tanaka ◽  
Toshikazu Watanabe

AbstractBlock decomposition of $L^{p}$ spaces with weighted Hausdorff content is established for $0<p\leqslant 1$ and the Fefferman–Stein type inequalities are shown for fractional integral operators and some variants of maximal operators.


Sign in / Sign up

Export Citation Format

Share Document